A smaller extended formulation for the odd cycle inequalities of the stable set polytope

For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis (1991) introduced an extended formulation for the odd cycle inequalities of the stable set polytope, which provides a direct way to optimize over the odd cycle polyto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2021-11, Vol.303, p.14-21
Hauptverfasser: de Vries, Sven, Perscheid, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis (1991) introduced an extended formulation for the odd cycle inequalities of the stable set polytope, which provides a direct way to optimize over the odd cycle polytope in polynomial time, although there can exist exponentially many odd cycles in given graphs in general. We present another extended formulation for the odd cycle polytope that uses less variables and inequalities than Yannakakis’ formulation. Moreover, we compare the running time of both formulations as relaxations of the maximum stable set problem in a computational study.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2020.10.006