Band gaps for elastic flexural wave propagation in periodic composite plate structures with star-shaped, transversely isotropic, magneto-electro-elastic inclusions

A new model for predicting elastic flexural wave band gaps in periodic composite plate structures containing interconnected, star-shaped, transversely isotropic, magneto-electro-elastic (MEE) inclusions is developed using a microstructure-dependent Mindlin plate model. The Floquet–Bloch theorem and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2021-11, Vol.232 (11), p.4325-4346
Hauptverfasser: Zhang, G. Y., Shen, W., Gu, S. T., Gao, X.-L., Xin, Z.-Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new model for predicting elastic flexural wave band gaps in periodic composite plate structures containing interconnected, star-shaped, transversely isotropic, magneto-electro-elastic (MEE) inclusions is developed using a microstructure-dependent Mindlin plate model. The Floquet–Bloch theorem and the plane wave expansion method for periodic media are employed to solve the non-classical wave equations and to determine the band gaps incorporating the microstructure effect. The current non-classical model recovers its classical elasticity-based counterpart as a special case if the microstructure effect is suppressed. A parametric study is performed to demonstrate the newly developed model. The numerical results of the study show that the microstructure effect on band gaps is large when the plate is very thin. In addition, the unit cell edge length, inclusion geometry and MEE coupling have significant effects on band gap sizes, and large band gaps can be generated by tailoring the controlling parameters.
ISSN:0001-5970
1619-6937
DOI:10.1007/s00707-021-03050-0