Macrosegregation in horizontal direct chill casting of ternary Al alloys: Investigation of solid motion

Macrosegregation in direct chill casting processes is controlled by fluid flow due to the thermosolutal natural and forced convection, shrinkage, and transport of unattached solid grains. Because grain refinement is usually used in aluminum direct chill casting, some effort must be made to model fre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2012-01, Vol.27 (1), p.012069-6
Hauptverfasser: Vušanović, I, Krane, M J M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Macrosegregation in direct chill casting processes is controlled by fluid flow due to the thermosolutal natural and forced convection, shrinkage, and transport of unattached solid grains. Because grain refinement is usually used in aluminum direct chill casting, some effort must be made to model free-floating solid grains, and their attachment to a rigid mushy zone. Criteria for attachment vary, but many are based on using a critical solid packing fraction, which is treated as uniform and constant throughout the domain. In the case of horizontal casting (HDC), gravity acts perpendicularly to the casting direction, and the assumption of a uniform packing fraction cannot be applied because the solid particles attach to some surfaces by settling and others by being swept into the rigid solid from below. In this simulation of HDC casting of an Al-Cu-Mg alloy, the rigid and unattached solid is tracked separately, and a rule set is developed to determine the attachment of free-floating solid. Comparison between cases with and without unattached solid movement shows qualitatively different results, particularly in bottom part of slab. Non-uniform packing fractions cause very different segregation patterns in the lower half of the ingot compared to the cases with no solid movement, less segregation near centerline compared to uniform packing fraction cases, and positive segregation near the place where inlet jet impinges on the mushy zone.
ISSN:1757-899X
1757-8981
1757-899X
DOI:10.1088/1757-899X/27/1/012069