Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model

This paper considers a semiparametric generalized autoregressive conditional heteroskedasticity (S-GARCH) model. For this model, we first estimate the time-varying long run component for unconditional variance by the kernel estimator, and then estimate the non-time-varying parameters in GARCH-type s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2021-10, Vol.224 (2), p.306-329
Hauptverfasser: Jiang, Feiyu, Li, Dong, Zhu, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers a semiparametric generalized autoregressive conditional heteroskedasticity (S-GARCH) model. For this model, we first estimate the time-varying long run component for unconditional variance by the kernel estimator, and then estimate the non-time-varying parameters in GARCH-type short run component by the quasi maximum likelihood estimator (QMLE). We show that the QMLE is asymptotically normal with the parametric convergence rate. Next, we construct a Lagrange multiplier test for linear parameter constraint and a portmanteau test for model checking, and obtain their asymptotic null distributions. Our entire statistical inference procedure works for the non-stationary data with two important features: first, our QMLE and two tests are adaptive to the unknown form of the long run component; second, our QMLE and two tests share the same efficiency and testing power as those in variance targeting method when the S-GARCH model is stationary.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2020.10.007