Impact Factors Analysis of Diesel Particulate Filter Regeneration Performance Based on Model and Test
In the application of DPFs (diesel particulate filters), temperature prediction and control technology during the regeneration phase has always been a great challenge, which directly affects the safety and performance of diesel vehicles. In this study, based on theoretical analysis and sample gas be...
Gespeichert in:
Veröffentlicht in: | Processes 2021-10, Vol.9 (10), p.1748 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the application of DPFs (diesel particulate filters), temperature prediction and control technology during the regeneration phase has always been a great challenge, which directly affects the safety and performance of diesel vehicles. In this study, based on theoretical analysis and sample gas bench test results, a one-dimensional simulation model is built with GT-POWER software. The effects of soot loading quantity and oxygen concentration on regeneration temperature performance are studied. Simulation results show that, when the soot loading quantity exceeds 46 g (12.7 g/L), the maximum temperature inside DPF during the regeneration phase would be higher than 800 °C, and the risk of burning crack would be high. When the oxygen concentration in the exhaust gas is low (lower than 7%), the fuel injected into exhaust gas fails to give off enough heat, and the exhaust gas temperature fails to reach the target regeneration temperature, hydrocarbon emission could be found from the DPF outlet position; when the oxygen concentration in the exhaust gas reaches 7% or above, the DPF inlet temperature could reach the target temperature, accompanied by less hydrocarbon emission. Combined with the simulation results, engine test bench validation was carried out. The results show that the simulation results and test results agree well. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr9101748 |