The Potential Role of S-and Fe-Cycling Bacteria on the Formation of Fe-Bearing Mineral (Pyrite and Vivianite) in Alluvial Sediments from the Upper Chicamocha River Basin, Colombia

S- and Fe-cycling bacteria can decisively affect the crystallization of Fe-bearing minerals in sediments from fluvial environments. We have studied the relationships between the Fe-bearing mineral assemblage and the bacterial community composition in the sediments rich in organic matter from the upp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2021-10, Vol.11 (10), p.1148
Hauptverfasser: Quevedo, Claudia Patricia, Jiménez-Millán, Juan, Cifuentes, Gabriel Ricardo, Gálvez, Antonio, Castellanos-Rozo, José, Jiménez-Espinosa, Rosario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:S- and Fe-cycling bacteria can decisively affect the crystallization of Fe-bearing minerals in sediments from fluvial environments. We have studied the relationships between the Fe-bearing mineral assemblage and the bacterial community composition in the sediments rich in organic matter from the upper Chicamocha river basin (Colombia). Rapid flowing sections of the river contain sediments that have a high redox potential, are poor in organic matter and are enriched in kaolinite and quartz. On the other hand, the mineral assemblage of the sediments deposited in the La Playa dam with a high content in organic matter is enriched in Fe-bearing minerals: (a) vivianite and pyrite in the permanently flooded sediments of the dam and (b) pyrite and goethite in the periodically emerged sediments. The bacterial community composition of these sediments reveals anthropic organic matter pollution processes and biodegradation associated with eutrophication. Moreover, periodically emerged sediments in the La Playa dam contain bacterial groups adapted to the alternation of dry and wet periods under oxic or anoxic conditions. Cell-shaped aggregates with a pyritic composition suggest that sulfate-reducing bacteria (SRB) communities were involved in the precipitation of Fe-sulfides. The precipitation of vivianite in the flooded sediments was favored by a greater availability of Fe(II), which promoted the iron-reducing bacteria (IRB) enrichment of the sediments. The presence of sulfur-oxidizing bacteria (SOB) in the flooded sediments and the activity of iron-oxidizing bacteria (IOB) in the periodically emerged sediments favored both pyrite crystallization under a high sulfide availability and the oxidation of microbially precipitated monosulfides. Moreover, IOB enhanced goethite formation in the periodically emerged sediments.
ISSN:2075-163X
2075-163X
DOI:10.3390/min11101148