Organocatalysis: A Tool of Choice for the Enantioselective Nucleophilic Dearomatization of Electron-Deficient Six-Membered Ring Azaarenium Salts

Nucleophilic dearomatization of azaarenium salts is a powerful strategy to access 3D scaffolds of interest from easily accessible planar aromatic azaarene compounds. Moreover, this approach yields complex dihydroazaarenes by allowing the functionalization of the scaffold simultaneously to the dearom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2021-10, Vol.11 (10), p.1249
Hauptverfasser: Segovia, Claire, Nocquet, Pierre-Antoine, Levacher, Vincent, Brière, Jean-François, Oudeyer, Sylvain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nucleophilic dearomatization of azaarenium salts is a powerful strategy to access 3D scaffolds of interest from easily accessible planar aromatic azaarene compounds. Moreover, this approach yields complex dihydroazaarenes by allowing the functionalization of the scaffold simultaneously to the dearomatization step. On the other side, organocatalysis is nowadays recognized as one of the pillars of the asymmetric catalysis field of research and is well-known to afford a high level of enantioselectivity for a myriad of transformations thanks to well-organized transition states resulting from low-energy interactions (electrostatic and/or H-bonding interactions…). Consequently, in the last fifteen years, organocatalysis has met great success in nucleophilic dearomatization of azaarenium salts. This review summarizes the work achieved up to date in the field of organocatalyzed nucleophilic dearomatization of azaarenium salts (mainly pyridinium, quinolinium, quinolinium and acridinium salts). A classification by organocatalytic mode of activation will be disclosed by shedding light on their related advantages and drawbacks. The versatility of the dearomatization approach will also be demonstrated by discussing several chemical transformations of the resulting dihydroazaarenes towards the synthesis of structurally complex compounds.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal11101249