An Integrated Cost-Aware Dual Monitoring Framework for SMPS Switching Device Diagnosis
The ability of a switch-mode AC/DC power supply to shrink supplies is a benefit and a requirement for most electronic devices with limited space. Major failures in switch-mode power supply (SMPS) during adverse working conditions are subject to mostly the switching devices and capacitors. For effect...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2021-10, Vol.10 (20), p.2487 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ability of a switch-mode AC/DC power supply to shrink supplies is a benefit and a requirement for most electronic devices with limited space. Major failures in switch-mode power supply (SMPS) during adverse working conditions are subject to mostly the switching devices and capacitors. For effective condition monitoring of the SMPS, dual (or multiple) sensing provides a more reliable standpoint against the traditional single sensing techniques as it provides a more comprehensive paradigm for accurate condition monitoring. This study proposes an integrated approach to SMPS condition monitoring by exploiting statistically extracted features from current and voltage signals for system fault diagnosis based on electrical stress. Following a correlation-based feature selection approach, salient features were utilized for improved fault detection and isolation (FDI) using ML-based classifiers. Diagnostic results by the classifiers reveal that the random forest and gradient boosting classifiers are highly reliable but computationally expensive when compared with the others while the decision tree was quite cost-efficient with reliable diagnostic results. The proposed framework is effectively applicable for use in diagnosing the switching devices and classification at different states. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics10202487 |