Speeding Up Velocity Consensus Control with Small World Communication Topology for Unmanned Aerial Vehicle Swarms

This study addressed a problem of rapid velocity consensus within a swarm of unmanned aerial vehicles. Our analytical framework was based on tools using matrix theory and algebraic graph theory. We established connections between algebraic connectivity and the speed of converging on a velocity. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2021-10, Vol.10 (20), p.2547
Hauptverfasser: Ji, Xiang, Zhang, Wanpeng, Chen, Shaofei, Luo, Junren, Lu, Lina, Yuan, Weilin, Hu, Zhenzhen, Chen, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study addressed a problem of rapid velocity consensus within a swarm of unmanned aerial vehicles. Our analytical framework was based on tools using matrix theory and algebraic graph theory. We established connections between algebraic connectivity and the speed of converging on a velocity. The relationship between algebraic connectivity and communication cost was established. To deal with the trade-off among algebraic connectivity, convergence speed and communication cost, we propose a distributed small world network construction method. The small world network characteristics expedite the convergence speed toward consensus in the unmanned aerial vehicle swarm. Eventually, our method greatly sped up the consensus velocities in the unmanned aerial vehicle swarms at a lower communication cost than other methods required.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics10202547