The Voisin map via families of extensions
Let Y be a cubic fourfold not containing any plane, F ( Y ) be the variety of lines in Y , Z ( Y ) be the Lehn-Lehn-Sorger-van Straten hyperkähler eightfold constructed in Lehn et al. (J für die Reine und Angewandte Math (Crelles J) 2017(731):87–128, 2017). In Voisin (Remarks and questions on Coiso...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2021-12, Vol.299 (3-4), p.1987-2003 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
Y
be a cubic fourfold not containing any plane,
F
(
Y
) be the variety of lines in
Y
,
Z
(
Y
) be the Lehn-Lehn-Sorger-van Straten hyperkähler eightfold constructed in Lehn et al. (J für die Reine und Angewandte Math (Crelles J) 2017(731):87–128, 2017). In Voisin (Remarks and questions on Coisotropic subvarieties and 0-cycles of hyper-Kähler varieties. Springer International Publishing, Berlin, 2016), Voisin defined a degree six rational map
v
:
F
(
Y
)
×
F
(
Y
)
⤏
Z
(
Y
)
,
relating the two hyperkähler varieties
F
(
Y
) and
Z
(
Y
). In this note, we reinterpret this map
v
using moduli spaces of Bridgeland stable objects in a triangulated category associated with
Y
, called a Kuznetsov component of
Y
. We prove that the Voisin map
v
can be resolved by blowing up the incident locus of intersecting lines in
F
(
Y
)
×
F
(
Y
)
endowed with the reduced scheme structure. As a consequence of our approach, we also show that the above-mentioned blowup is a relative Quot scheme over
Z
(
Y
) parameterizing quotients in a heart of the Kuznetsov component of
Y
. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-021-02747-1 |