Effect of wheat powdery mildew on grain nitrogen metabolism

Glutamine synthetase (GS) and glutamate synthase (GOGAT) play a central role in plant nitrogen (N) metabolism. In order to study the effect of powdery mildew (Blumeria graminis f. sp. tritici, Bgt) on N metabolism, field experiments were carried out to evaluate GS and GOGAT activity, GS expression a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of agricultural science 2021-01, Vol.159 (1-2), p.128-138
Hauptverfasser: Gao, H. Y., Niu, J. S., Liu, W. Q., Zhang, D. L., Li, S. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glutamine synthetase (GS) and glutamate synthase (GOGAT) play a central role in plant nitrogen (N) metabolism. In order to study the effect of powdery mildew (Blumeria graminis f. sp. tritici, Bgt) on N metabolism, field experiments were carried out to evaluate GS and GOGAT activity, GS expression and grain protein content (GPC) in susceptible (Xi'nong 979) and resistant (Zhengmai 103) wheat cultivars under three treatments. The three treatments were no inoculation (CK), inoculated once with Bgt (MP) and inoculated nine times with Bgt (HP). For Xi'nong 979, the activities of GS and GOGAT in grains as well as GS activity in flag leaves increased at 10–15 days after anthesis (DAA), and decreased significantly at 15 or 20–30 DAA in HP and MP. However, GS activity in grains decreased from 20 DAA, which was later than that of flag leaves (15 DAA). At the same time, GS expression in grains was up-regulated at early stage, with GS1 at 10 DAA and GS2 at 15 DAA, followed by a continuous down-regulation. This result indicated that GS and GOGAT activity as well as GS expression were inhibited by powdery mildew, indicating that N metabolism in grains was inhibited at 20–30 DAA. The current study also found out that the yield of the susceptible cultivar decreased significantly, while its GPC increased obviously in HP. It was shown that the increase of GPC was not due to the enhancement of N metabolism, but due to the passive increase caused by yield reduction.
ISSN:0021-8596
1469-5146
DOI:10.1017/S0021859621000307