Self-Standardized Central Limit Theorems for Trimmed Lévy Processes

We prove under general conditions that a trimmed subordinator satisfies a self-standardized central limit theorem (SSCLT). Our basic tool is a powerful distributional approximation result of Zaitsev (Probab Theory Relat Fields 74:535–566, 1987). Among other results, we obtain as special cases of our...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2021-12, Vol.34 (4), p.2117-2144
1. Verfasser: Mason, David M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove under general conditions that a trimmed subordinator satisfies a self-standardized central limit theorem (SSCLT). Our basic tool is a powerful distributional approximation result of Zaitsev (Probab Theory Relat Fields 74:535–566, 1987). Among other results, we obtain as special cases of our subordinator result the recent SSCLTs of Ipsen et al. (Stoch Process Appl 130:2228–2249, 2020) for trimmed subordinators and a trimmed subordinator analog of a central limit theorem of Csörgő et al. (Probab Theory Relat Fields 72:1–16, 1986) for intermediate trimmed sums in the domain of attraction of a stable law. We then use our methods to prove a similar theorem for general Lévy processes.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-020-01021-0