Self-Standardized Central Limit Theorems for Trimmed Lévy Processes
We prove under general conditions that a trimmed subordinator satisfies a self-standardized central limit theorem (SSCLT). Our basic tool is a powerful distributional approximation result of Zaitsev (Probab Theory Relat Fields 74:535–566, 1987). Among other results, we obtain as special cases of our...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical probability 2021-12, Vol.34 (4), p.2117-2144 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove under general conditions that a trimmed subordinator satisfies a self-standardized central limit theorem (SSCLT). Our basic tool is a powerful distributional approximation result of Zaitsev (Probab Theory Relat Fields 74:535–566, 1987). Among other results, we obtain as special cases of our subordinator result the recent SSCLTs of Ipsen et al. (Stoch Process Appl 130:2228–2249, 2020) for trimmed subordinators and a trimmed subordinator analog of a central limit theorem of Csörgő et al. (Probab Theory Relat Fields 72:1–16, 1986) for intermediate trimmed sums in the domain of attraction of a stable law. We then use our methods to prove a similar theorem for general Lévy processes. |
---|---|
ISSN: | 0894-9840 1572-9230 |
DOI: | 10.1007/s10959-020-01021-0 |