Topic modelling and social network analysis of publications and patents in humanoid robot technology

This article presents analysis of data from scientific articles and patents to identify the evolving trends and underlying topics in research on humanoid robots. We used topic modelling based on latent Dirichlet allocation analysis to identify underlying topics in sub-areas in the field. We also use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of information science 2021-10, Vol.47 (5), p.658-676
Hauptverfasser: Kumari, Richa, Jeong, Jae Yun, Lee, Byeong-Hee, Choi, Kwang-Nam, Choi, Kiseok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents analysis of data from scientific articles and patents to identify the evolving trends and underlying topics in research on humanoid robots. We used topic modelling based on latent Dirichlet allocation analysis to identify underlying topics in sub-areas in the field. We also used social network analysis to measure the centrality indices of publication keywords to detect important and influential sub-areas and used co-occurrence analysis of keywords to visualise relationships among subfields. The research result is useful to identify evolving topics and areas of current focus in the field of humanoid technology. The results contribute to identify valuable research patterns from publications and to increase understanding of the hidden knowledge themes that are revealed by patents.
ISSN:0165-5515
1741-6485
DOI:10.1177/0165551519887878