SleepPriorCL: Contrastive Representation Learning with Prior Knowledge-based Positive Mining and Adaptive Temperature for Sleep Staging
The objective of this paper is to learn semantic representations for sleep stage classification from raw physiological time series. Although supervised methods have gained remarkable performance, they are limited in clinical situations due to the requirement of fully labeled data. Self-supervised le...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of this paper is to learn semantic representations for sleep stage classification from raw physiological time series. Although supervised methods have gained remarkable performance, they are limited in clinical situations due to the requirement of fully labeled data. Self-supervised learning (SSL) based on contrasting semantically similar (positive) and dissimilar (negative) pairs of samples have achieved promising success. However, existing SSL methods suffer the problem that many semantically similar positives are still uncovered and even treated as negatives. In this paper, we propose a novel SSL approach named SleepPriorCL to alleviate the above problem. Advances of our approach over existing SSL methods are two-fold: 1) by incorporating prior domain knowledge into the training regime of SSL, more semantically similar positives are discovered without accessing ground-truth labels; 2) via investigating the influence of the temperature in contrastive loss, an adaptive temperature mechanism for each sample according to prior domain knowledge is further proposed, leading to better performance. Extensive experiments demonstrate that our method achieves state-of-the-art performance and consistently outperforms baselines. |
---|---|
ISSN: | 2331-8422 |