Supervised Domain Adaptation: A Graph Embedding Perspective and a Rectified Experimental Protocol

Domain Adaptation is the process of alleviating distribution gaps between data from different domains. In this paper, we show that Domain Adaptation methods using pair-wise relationships between source and target domain data can be formulated as a Graph Embedding in which the domain labels are incor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2021, Vol.30, p.8619-8631
Hauptverfasser: Hedegaard, Lukas, Sheikh-Omar, Omar Ali, Iosifidis, Alexandros
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Domain Adaptation is the process of alleviating distribution gaps between data from different domains. In this paper, we show that Domain Adaptation methods using pair-wise relationships between source and target domain data can be formulated as a Graph Embedding in which the domain labels are incorporated into the structure of the intrinsic and penalty graphs. Specifically, we analyse the loss functions of three existing state-of-the-art Supervised Domain Adaptation methods and demonstrate that they perform Graph Embedding. Moreover, we highlight some generalisation and reproducibility issues related to the experimental setup commonly used to demonstrate the few-shot learning capabilities of these methods. To assess and compare Supervised Domain Adaptation methods accurately, we propose a rectified evaluation protocol, and report updated benchmarks on the standard datasets Office31 (Amazon, DSLR, and Webcam), Digits (MNIST, USPS, SVHN, and MNIST-M) and VisDA (Synthetic, Real).
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2021.3118978