Tau-Functions and Monodromy Symplectomorphisms
We derive a new Hamiltonian formulation of Schlesinger equations in terms of the dynamical r -matrix structure. The corresponding symplectic form is shown to be the pullback, under the monodromy map, of a natural symplectic form on the extended monodromy manifold. We show that Fock–Goncharov coordin...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2021-11, Vol.388 (1), p.245-290 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 290 |
---|---|
container_issue | 1 |
container_start_page | 245 |
container_title | Communications in mathematical physics |
container_volume | 388 |
creator | Bertola, M. Korotkin, D. |
description | We derive a new Hamiltonian formulation of Schlesinger equations in terms of the dynamical
r
-matrix structure. The corresponding symplectic form is shown to be the pullback, under the monodromy map, of a natural symplectic form on the extended monodromy manifold. We show that Fock–Goncharov coordinates are log-canonical for the symplectic form. Using these coordinates we define the symplectic potential on the monodromy manifold and interpret the Jimbo–Miwa–Ueno tau-function as the generating function of the monodromy map. This, in particular, solves a recent conjecture by A. Its, O. Lisovyy and A. Prokhorov. |
doi_str_mv | 10.1007/s00220-021-04224-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583475827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583475827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-70f7c4b0e9a28704b486c9891c34f5c2d40a2ecaf49a43e1b889918b51a6d6563</originalsourceid><addsrcrecordid>eNp9kDFPwzAQRi0EEqXwB5gqMbucz45jj6iiFKmIgTJbjuNAqyYOdjLk35MSJDamW973TnqE3DJYMoD8PgEgAgVkFASioPKMzJjgSEEzeU5mAAwol0xekquUDgCgUcoZWe5sT9d947p9aNLCNuXiJTShjKEeFm9D3R6960IdYvu5T3W6JheVPSZ_83vn5H39uFtt6Pb16Xn1sKWOS97RHKrciQK8tqhyEIVQ0mmlmeOiyhyWAix6ZyuhreCeFUppzVSRMStLmUk-J3eTt43hq_epM4fQx2Z8aTBTXOSZwnykcKJcDClFX5k27msbB8PAnLqYqYsZu5ifLuak5tMojXDz4eOf-p_VNxraZEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583475827</pqid></control><display><type>article</type><title>Tau-Functions and Monodromy Symplectomorphisms</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bertola, M. ; Korotkin, D.</creator><creatorcontrib>Bertola, M. ; Korotkin, D.</creatorcontrib><description>We derive a new Hamiltonian formulation of Schlesinger equations in terms of the dynamical
r
-matrix structure. The corresponding symplectic form is shown to be the pullback, under the monodromy map, of a natural symplectic form on the extended monodromy manifold. We show that Fock–Goncharov coordinates are log-canonical for the symplectic form. Using these coordinates we define the symplectic potential on the monodromy manifold and interpret the Jimbo–Miwa–Ueno tau-function as the generating function of the monodromy map. This, in particular, solves a recent conjecture by A. Its, O. Lisovyy and A. Prokhorov.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-021-04224-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Manifolds ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2021-11, Vol.388 (1), p.245-290</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-70f7c4b0e9a28704b486c9891c34f5c2d40a2ecaf49a43e1b889918b51a6d6563</citedby><cites>FETCH-LOGICAL-c363t-70f7c4b0e9a28704b486c9891c34f5c2d40a2ecaf49a43e1b889918b51a6d6563</cites><orcidid>0000-0001-7945-925X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-021-04224-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-021-04224-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bertola, M.</creatorcontrib><creatorcontrib>Korotkin, D.</creatorcontrib><title>Tau-Functions and Monodromy Symplectomorphisms</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We derive a new Hamiltonian formulation of Schlesinger equations in terms of the dynamical
r
-matrix structure. The corresponding symplectic form is shown to be the pullback, under the monodromy map, of a natural symplectic form on the extended monodromy manifold. We show that Fock–Goncharov coordinates are log-canonical for the symplectic form. Using these coordinates we define the symplectic potential on the monodromy manifold and interpret the Jimbo–Miwa–Ueno tau-function as the generating function of the monodromy map. This, in particular, solves a recent conjecture by A. Its, O. Lisovyy and A. Prokhorov.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Manifolds</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kDFPwzAQRi0EEqXwB5gqMbucz45jj6iiFKmIgTJbjuNAqyYOdjLk35MSJDamW973TnqE3DJYMoD8PgEgAgVkFASioPKMzJjgSEEzeU5mAAwol0xekquUDgCgUcoZWe5sT9d947p9aNLCNuXiJTShjKEeFm9D3R6960IdYvu5T3W6JheVPSZ_83vn5H39uFtt6Pb16Xn1sKWOS97RHKrciQK8tqhyEIVQ0mmlmeOiyhyWAix6ZyuhreCeFUppzVSRMStLmUk-J3eTt43hq_epM4fQx2Z8aTBTXOSZwnykcKJcDClFX5k27msbB8PAnLqYqYsZu5ifLuak5tMojXDz4eOf-p_VNxraZEA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Bertola, M.</creator><creator>Korotkin, D.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7945-925X</orcidid></search><sort><creationdate>20211101</creationdate><title>Tau-Functions and Monodromy Symplectomorphisms</title><author>Bertola, M. ; Korotkin, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-70f7c4b0e9a28704b486c9891c34f5c2d40a2ecaf49a43e1b889918b51a6d6563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Manifolds</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertola, M.</creatorcontrib><creatorcontrib>Korotkin, D.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertola, M.</au><au>Korotkin, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tau-Functions and Monodromy Symplectomorphisms</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>388</volume><issue>1</issue><spage>245</spage><epage>290</epage><pages>245-290</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We derive a new Hamiltonian formulation of Schlesinger equations in terms of the dynamical
r
-matrix structure. The corresponding symplectic form is shown to be the pullback, under the monodromy map, of a natural symplectic form on the extended monodromy manifold. We show that Fock–Goncharov coordinates are log-canonical for the symplectic form. Using these coordinates we define the symplectic potential on the monodromy manifold and interpret the Jimbo–Miwa–Ueno tau-function as the generating function of the monodromy map. This, in particular, solves a recent conjecture by A. Its, O. Lisovyy and A. Prokhorov.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-021-04224-6</doi><tpages>46</tpages><orcidid>https://orcid.org/0000-0001-7945-925X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2021-11, Vol.388 (1), p.245-290 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2583475827 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classical and Quantum Gravitation Complex Systems Manifolds Mathematical and Computational Physics Mathematical Physics Physics Physics and Astronomy Quantum Physics Relativity Theory Theoretical |
title | Tau-Functions and Monodromy Symplectomorphisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tau-Functions%20and%20Monodromy%20Symplectomorphisms&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Bertola,%20M.&rft.date=2021-11-01&rft.volume=388&rft.issue=1&rft.spage=245&rft.epage=290&rft.pages=245-290&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-021-04224-6&rft_dat=%3Cproquest_cross%3E2583475827%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583475827&rft_id=info:pmid/&rfr_iscdi=true |