Tau-Functions and Monodromy Symplectomorphisms

We derive a new Hamiltonian formulation of Schlesinger equations in terms of the dynamical r -matrix structure. The corresponding symplectic form is shown to be the pullback, under the monodromy map, of a natural symplectic form on the extended monodromy manifold. We show that Fock–Goncharov coordin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2021-11, Vol.388 (1), p.245-290
Hauptverfasser: Bertola, M., Korotkin, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive a new Hamiltonian formulation of Schlesinger equations in terms of the dynamical r -matrix structure. The corresponding symplectic form is shown to be the pullback, under the monodromy map, of a natural symplectic form on the extended monodromy manifold. We show that Fock–Goncharov coordinates are log-canonical for the symplectic form. Using these coordinates we define the symplectic potential on the monodromy manifold and interpret the Jimbo–Miwa–Ueno tau-function as the generating function of the monodromy map. This, in particular, solves a recent conjecture by A. Its, O. Lisovyy and A. Prokhorov.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-021-04224-6