Tau-Functions and Monodromy Symplectomorphisms
We derive a new Hamiltonian formulation of Schlesinger equations in terms of the dynamical r -matrix structure. The corresponding symplectic form is shown to be the pullback, under the monodromy map, of a natural symplectic form on the extended monodromy manifold. We show that Fock–Goncharov coordin...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2021-11, Vol.388 (1), p.245-290 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive a new Hamiltonian formulation of Schlesinger equations in terms of the dynamical
r
-matrix structure. The corresponding symplectic form is shown to be the pullback, under the monodromy map, of a natural symplectic form on the extended monodromy manifold. We show that Fock–Goncharov coordinates are log-canonical for the symplectic form. Using these coordinates we define the symplectic potential on the monodromy manifold and interpret the Jimbo–Miwa–Ueno tau-function as the generating function of the monodromy map. This, in particular, solves a recent conjecture by A. Its, O. Lisovyy and A. Prokhorov. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-021-04224-6 |