可变形网络与迁移学习相结合的电力塔遥感影像目标检测法
电力塔是电力基础设施的重要组成部分,对其进行检测是必不可少的工作。针对当前遥感影像电力塔检测算法精度低,效果差的问题,本文基于可变形网络和迁移学习对Faster R-CNN进行改进,提出一种基于遥感影像的电力塔检测框架。该框架主要分为两个部分:①特征提取子网络,即利用可变形网络模型改进卷积层,来提高模型对于电力塔几何形变的特征提取能力;②目标检测子网络,即通过模型迁移,将由特征提取子网络训练获得的模型参数迁移至此子网络,由RPN网络和可变形区域池化结合非极大值抑制(NMS)精确获取电力塔位置,利用Fine-tuning技术快速训练此子网络,最终实现高精度的遥感影像电力塔检测。本文算法在测试集中...
Gespeichert in:
Veröffentlicht in: | Ce hui xue bao 2020-08, Vol.49 (8), p.1042 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 电力塔是电力基础设施的重要组成部分,对其进行检测是必不可少的工作。针对当前遥感影像电力塔检测算法精度低,效果差的问题,本文基于可变形网络和迁移学习对Faster R-CNN进行改进,提出一种基于遥感影像的电力塔检测框架。该框架主要分为两个部分:①特征提取子网络,即利用可变形网络模型改进卷积层,来提高模型对于电力塔几何形变的特征提取能力;②目标检测子网络,即通过模型迁移,将由特征提取子网络训练获得的模型参数迁移至此子网络,由RPN网络和可变形区域池化结合非极大值抑制(NMS)精确获取电力塔位置,利用Fine-tuning技术快速训练此子网络,最终实现高精度的遥感影像电力塔检测。本文算法在测试集中对电力塔检测结果为AP0.5 0.886 1,AP0.6 0.839 6,ACC 0.894 8,与SSD、YOLOv3、Faster R-CNN等相比,各检测指标至少高0.2。由对比试验可以看出,该框架对电力塔遥感影像可以实现较高精度检测,表明该方法在电力塔检测上拥有较大应用潜力。 |
---|---|
ISSN: | 1001-1595 1001-1595 |
DOI: | 10.11947/j.AGCS.2020.20190356 |