In Situ/Operando Capturing Unusual Ir6+ Facilitating Ultrafast Electrocatalytic Water Oxidation

Identifying real active sites and understanding the mechanism of oxygen evolution reaction (OER) are still a big challenge today for developing efficient electrochemical catalysts in renewable energy technologies. Here, using a combined in situ/operando experiments and theory, the catalytic mechanis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-10, Vol.31 (43), p.n/a
Hauptverfasser: Li, Lili, Sun, Hainan, Hu, Zhiwei, Zhou, Jing, Huang, Yu‐Cheng, Huang, Haoliang, Song, Sanzhao, Pao, Chih‐Wen, Chang, Yu‐Chung, Komarek, Alexander C., Lin, Hong‐Ji, Chen, Chien‐Te, Dong, Chung‐Li, Wang, Jian‐Qiang, Zhang, Linjuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Identifying real active sites and understanding the mechanism of oxygen evolution reaction (OER) are still a big challenge today for developing efficient electrochemical catalysts in renewable energy technologies. Here, using a combined in situ/operando experiments and theory, the catalytic mechanism of the ordered OER active Co and Ir ions in Sr2CoIrO6−δ is studied, which exhibits an unprecedented low overpotential 210 mV to achieve 10 mA cm–2, ranking the highest performance among perovskite‐based solid‐state catalysts. Operando X‐ray absorption spectroscopies as a function of applied voltage indicates that Ir4+ ion is gradually converted into extremely high‐valence Ir5+/6+, while the part of Co3+ ion is transferred into Co4+ under OER process. Density functional theory calculations explicitly reveal the order Co‐O‐Ir network as an origin of ultrahigh OER activity. The work opens a promising path to overcome the sluggish kinetics of OER bottleneck for water splitting via proper arrangements of the multi‐active sites in catalyst. Operando experimental observation of a gradual oxidation state transition from Ir4+ to Ir5+ and further to Ir6+ and theoretical simulation expatiates the origin of ultrafast electrocatalytic water oxidation of the Sr2CoIrO6−δ catalyst with Co‐O‐Ir ordered arrangement.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202104746