In Situ/Operando Capturing Unusual Ir6+ Facilitating Ultrafast Electrocatalytic Water Oxidation
Identifying real active sites and understanding the mechanism of oxygen evolution reaction (OER) are still a big challenge today for developing efficient electrochemical catalysts in renewable energy technologies. Here, using a combined in situ/operando experiments and theory, the catalytic mechanis...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-10, Vol.31 (43), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Identifying real active sites and understanding the mechanism of oxygen evolution reaction (OER) are still a big challenge today for developing efficient electrochemical catalysts in renewable energy technologies. Here, using a combined in situ/operando experiments and theory, the catalytic mechanism of the ordered OER active Co and Ir ions in Sr2CoIrO6−δ is studied, which exhibits an unprecedented low overpotential 210 mV to achieve 10 mA cm–2, ranking the highest performance among perovskite‐based solid‐state catalysts. Operando X‐ray absorption spectroscopies as a function of applied voltage indicates that Ir4+ ion is gradually converted into extremely high‐valence Ir5+/6+, while the part of Co3+ ion is transferred into Co4+ under OER process. Density functional theory calculations explicitly reveal the order Co‐O‐Ir network as an origin of ultrahigh OER activity. The work opens a promising path to overcome the sluggish kinetics of OER bottleneck for water splitting via proper arrangements of the multi‐active sites in catalyst.
Operando experimental observation of a gradual oxidation state transition from Ir4+ to Ir5+ and further to Ir6+ and theoretical simulation expatiates the origin of ultrafast electrocatalytic water oxidation of the Sr2CoIrO6−δ catalyst with Co‐O‐Ir ordered arrangement. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202104746 |