A MIMO Radar-based Few-Shot Learning Approach for Human-ID

Radar for deep learning-based human identification has become a research area of increasing interest. It has been shown that micro-Doppler (\(\mu\)-D) can reflect the walking behavior through capturing the periodic limbs' micro-motions. One of the main aspects is maximizing the number of includ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-06
Hauptverfasser: Weller, Pascal, Aziz, Fady, Abdulatif, Sherif, Schneider, Urs, Huber, Marco F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radar for deep learning-based human identification has become a research area of increasing interest. It has been shown that micro-Doppler (\(\mu\)-D) can reflect the walking behavior through capturing the periodic limbs' micro-motions. One of the main aspects is maximizing the number of included classes while considering the real-time and training dataset size constraints. In this paper, a multiple-input-multiple-output (MIMO) radar is used to formulate micro-motion spectrograms of the elevation angular velocity (\(\mu\)-\(\omega\)). The effectiveness of concatenating this newly-formulated spectrogram with the commonly used \(\mu\)-D is investigated. To accommodate for non-constrained real walking motion, an adaptive cycle segmentation framework is utilized and a metric learning network is trained on half gait cycles (\(\approx\) 0.5 s). Studies on the effects of various numbers of classes (5--20), different dataset sizes, and varying observation time windows 1--2 s are conducted. A non-constrained walking dataset of 22 subjects is collected with different aspect angles with respect to the radar. The proposed few-shot learning (FSL) approach achieves a classification error of 11.3 % with only 2 min of training data per subject.
ISSN:2331-8422