The Fitting height of finite groups with a fixed-point-free automorphism satisfying an identity

Motivated by classic theorems of Thompson and Berger on the Fitting height of finite groups with a fixed-point-free automorphism of coprime order, we conjecture that, for every non-zero polynomial \(f(x) = a_0 + a_1 x + \cdots + a_d x^d \in \mathbb{Z}[x] \), there is an integer \(k > 0\) with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-10
1. Verfasser: Moens, Wolfgang Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by classic theorems of Thompson and Berger on the Fitting height of finite groups with a fixed-point-free automorphism of coprime order, we conjecture that, for every non-zero polynomial \(f(x) = a_0 + a_1 x + \cdots + a_d x^d \in \mathbb{Z}[x] \), there is an integer \(k > 0\) with the following property. Let \(G\) be a finite (solvable) group with a fixed-point-free automorphism \(\alpha\) satisfying \(\gcd(|G|,k)= 1\) and $$\{ g^{a_0} \cdot \alpha(g)^{a_1} \cdot \alpha^2(g)^{a_2} \cdots \alpha^d(g)^{a_d} | g \in G \} = \{1\}.$$ Then the Fitting height of \(G\) is at most the number of irreducible factors of \(f(x)\). We confirm the conjecture for a large family of polynomials with explicit constants \(k\).
ISSN:2331-8422