The Fitting height of finite groups with a fixed-point-free automorphism satisfying an identity
Motivated by classic theorems of Thompson and Berger on the Fitting height of finite groups with a fixed-point-free automorphism of coprime order, we conjecture that, for every non-zero polynomial \(f(x) = a_0 + a_1 x + \cdots + a_d x^d \in \mathbb{Z}[x] \), there is an integer \(k > 0\) with the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by classic theorems of Thompson and Berger on the Fitting height of finite groups with a fixed-point-free automorphism of coprime order, we conjecture that, for every non-zero polynomial \(f(x) = a_0 + a_1 x + \cdots + a_d x^d \in \mathbb{Z}[x] \), there is an integer \(k > 0\) with the following property. Let \(G\) be a finite (solvable) group with a fixed-point-free automorphism \(\alpha\) satisfying \(\gcd(|G|,k)= 1\) and $$\{ g^{a_0} \cdot \alpha(g)^{a_1} \cdot \alpha^2(g)^{a_2} \cdots \alpha^d(g)^{a_d} | g \in G \} = \{1\}.$$ Then the Fitting height of \(G\) is at most the number of irreducible factors of \(f(x)\). We confirm the conjecture for a large family of polynomials with explicit constants \(k\). |
---|---|
ISSN: | 2331-8422 |