Magnon modes as a joint effect of surface ferromagnetism and spin–orbit coupling in CoSi chiral topological semimetal

CoSi single crystal is a known realization of a chiral topological semimetal with simultaneously broken mirror and inversion symmetries. In addition to the symmetry-induced spin–orbit coupling, surface ferromagnetism is known in nominally diamagnetic CoSi structures, which appears due to the distort...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2021-12, Vol.540, p.168488, Article 168488
Hauptverfasser: Esin, V.D., Timonina, A.V., Kolesnikov, N.N., Deviatov, E.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CoSi single crystal is a known realization of a chiral topological semimetal with simultaneously broken mirror and inversion symmetries. In addition to the symmetry-induced spin–orbit coupling, surface ferromagnetism is known in nominally diamagnetic CoSi structures, which appears due to the distorted bonds and ordered vacancies near the surface. We experimentally investigate electron transport through a thin CoSi flake at high current density. Surprisingly, we demonstrate dV/dI(I) curves which are qualitatively similar to ones for ferromagnetic multilayers with characteristic dV/dI magnon peaks and unconventional magnetic field evolution of the peaks’ positions. We understand these observations as a result of current-induced spin polarization due to the significant spin–orbit coupling in CoSi. Scattering of non-equilibrium spin-polarized carriers within the surface ferromagnetic layer is responsible for the precessing spin-wave excitations, so the observed magnon modes are the joint effect of surface ferromagnetism and spin–orbit coupling in a CoSi chiral topological semimetal. Thus, thin CoSi flakes behave as magnetic conductors with broken inversion symmetry, which is important for different spintronic phenomena.
ISSN:0304-8853
1873-4766
DOI:10.1016/j.jmmm.2021.168488