Hydroponic Phytoremediation of Ni, Co, and Pb by Iris Sibirica L

Heavy metal pollution in mine wastelands is quite severe. Iris sibirica L., an emergent wetland plant, is characterized by an ability to survive under high stress of heavy metals. This study aimed to explore the phytoremediation ability of nickel (Ni), cobalt (Co), and lead (Pb) by Iris sibirica L....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2021-08, Vol.13 (16), p.9400
Hauptverfasser: Wan, Shuming, Pang, Jun, Li, Yiwei, Li, Yanping, Zhu, Jia, Wang, Jinsheng, Chang, Ming, Wang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heavy metal pollution in mine wastelands is quite severe. Iris sibirica L., an emergent wetland plant, is characterized by an ability to survive under high stress of heavy metals. This study aimed to explore the phytoremediation ability of nickel (Ni), cobalt (Co), and lead (Pb) by Iris sibirica L. under hydroponic conditions. A series of tests were conducted at different metal stress conditions to evaluate the phytoextraction and tolerance of Iris sibirica L. The concentrations of Ni, Co, and Pb in plant shoots reached their highest values in 500 mg L−1 treatments, where they were 6.55%, 23.64%, and 79.24% higher than those in 300 mg L−1, respectively. The same concentrations in roots also reached their peak in 500 mg L−1 treatments, where they were 5.52%, 33.02%, and 70.15% higher than those in 300 mg L−1, respectively. Bioconcentration factors (BCF) for Ni, Co, and Pb revealed the phytoextraction ability of Iris sibirica L., and the translocation factors (TCF) showed that Ni may be most easily translocated in the plant, followed by Co and Pb. This study indicates that, compared with Ni and Co, Iris sibirica L. is more suitable for the phytoremediation of Pb-contaminated metal mine wastelands.
ISSN:2071-1050
2071-1050
DOI:10.3390/su13169400