A τ-Symmetry Algebra of the Generalized Derivative Nonlinear Schrödinger Soliton Hierarchy with an Arbitrary Parameter

A matrix spectral problem is researched with an arbitrary parameter. Through zero curvature equations, two hierarchies are constructed of isospectral and nonisospectral generalized derivative nonlinear schrödinger equations. The resulting hierarchies include the Kaup-Newell equation, the Chen-Lee-Li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2018-11, Vol.10 (11), p.535
Hauptverfasser: Zhang, Jian-bing, Gongye, Yingyin, Ma, Wen-Xiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A matrix spectral problem is researched with an arbitrary parameter. Through zero curvature equations, two hierarchies are constructed of isospectral and nonisospectral generalized derivative nonlinear schrödinger equations. The resulting hierarchies include the Kaup-Newell equation, the Chen-Lee-Liu equation, the Gerdjikov-Ivanov equation, the modified Korteweg-de Vries equation, the Sharma-Tasso-Olever equation and a new equation as special reductions. The integro-differential operator related to the isospectral and nonisospectral hierarchies is shown to be not only a hereditary but also a strong symmetry of the whole isospectral hierarchy. For the isospectral hierarchy, the corresponding τ -symmetries are generated from the nonisospectral hierarchy and form an infinite-dimensional symmetry algebra with the K-symmetries.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym10110535