Mycielski among trees

The two‐dimensional version of the classical Mycielski theorem says that for every comeager or conull set X⊆[0,1]2 there exists a perfect set P⊆[0,1] such that P×P⊆X∪Δ. We consider a strengthening of this theorem by replacing a perfect square with a rectangle A×B, where A and B are bodies of some ty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical logic quarterly 2021-08, Vol.67 (3), p.271-281
Hauptverfasser: Michalski, Marcin, Rałowski, Robert, Żeberski, Szymon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The two‐dimensional version of the classical Mycielski theorem says that for every comeager or conull set X⊆[0,1]2 there exists a perfect set P⊆[0,1] such that P×P⊆X∪Δ. We consider a strengthening of this theorem by replacing a perfect square with a rectangle A×B, where A and B are bodies of some types of trees with A⊆B. In particular, we show that for every comeager Gδ set G⊆ωω×ωω there exist a Miller tree TM and a uniformly perfect tree TP⊆TM such that [TP]×[TM]⊆G∪Δ and that TP cannot be a Miller tree. In the case of measure we show that for every subset F of 2ω×2ω of full measure there exists a uniformly perfect tree TP⊆2
ISSN:0942-5616
1521-3870
DOI:10.1002/malq.202000002