Time-Slicing Approximation of Feynman Path Integrals on Compact Manifolds

We construct fundamental solutions to the time-dependent Schrödinger equations on compact manifolds by the time-slicing approximation of the Feynman path integral. We show that the iteration of short-time approximate solutions converges to the fundamental solutions to the Schrödinger equations modif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2021-11, Vol.22 (11), p.3871-3914
1. Verfasser: Fukushima, Shota
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct fundamental solutions to the time-dependent Schrödinger equations on compact manifolds by the time-slicing approximation of the Feynman path integral. We show that the iteration of short-time approximate solutions converges to the fundamental solutions to the Schrödinger equations modified by the scalar curvature in the uniform operator topology from the Sobolev space to the space of square integrable functions. In order to construct the time-slicing approximation by our method, we only need to consider broken paths consisting of sufficiently short classical paths. We prove the convergence to fundamental solutions by proving two important properties of the short-time approximate solution, the stability and the consistency.
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-021-01079-4