Time-Slicing Approximation of Feynman Path Integrals on Compact Manifolds
We construct fundamental solutions to the time-dependent Schrödinger equations on compact manifolds by the time-slicing approximation of the Feynman path integral. We show that the iteration of short-time approximate solutions converges to the fundamental solutions to the Schrödinger equations modif...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2021-11, Vol.22 (11), p.3871-3914 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct fundamental solutions to the time-dependent Schrödinger equations on compact manifolds by the time-slicing approximation of the Feynman path integral. We show that the iteration of short-time approximate solutions converges to the fundamental solutions to the Schrödinger equations modified by the scalar curvature in the uniform operator topology from the Sobolev space to the space of square integrable functions. In order to construct the time-slicing approximation by our method, we only need to consider broken paths consisting of sufficiently short classical paths. We prove the convergence to fundamental solutions by proving two important properties of the short-time approximate solution, the stability and the consistency. |
---|---|
ISSN: | 1424-0637 1424-0661 |
DOI: | 10.1007/s00023-021-01079-4 |