Physical and mechanical characteristics of composite briquette from coal and pretreated wood fines

Melina wood torrefied at 260 °C for 60 min was agglomerated with lean grade coal fines into composite briquettes using pitch as binder. Torrefied biomass (3%–20%) and coal fines (80%–97%) were blended together to produce the composite briquettes under a hydraulic press (28 MPa). The briquettes were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of coal science & technology 2021-10, Vol.8 (5), p.1088-1098
Hauptverfasser: Adeleke, Adekunle, Odusote, Jamiu, Ikubanni, Peter, Lasode, Olumuyiwa, Malathi, Madhurai, Pasawan, Dayanand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Melina wood torrefied at 260 °C for 60 min was agglomerated with lean grade coal fines into composite briquettes using pitch as binder. Torrefied biomass (3%–20%) and coal fines (80%–97%) were blended together to produce the composite briquettes under a hydraulic press (28 MPa). The briquettes were cured at 300 °C. Density, water resistance, drop to fracture, impact resistance, and cold crushing strength were evaluated for the composite briquettes. The proximate, ultimate, and calorific value analyses were carried out according to different ASTM standards. Microstructural studies were carried out using scanning electron microscope and electron probe microanalyzer equipped with energy dispersive x-ray. Fourier Transform Infrared Spectrophotometer (FTIR) was used to obtain the functional groups in the raw materials and briquettes. The density of the composite briquettes ranged from 0.92 to 1.31 g/cm 3 after curing. Briquettes with  95%). The highest cold crushing strength of 4 MPa was obtained for briquettes produced from 97% coal fines and 3% torrefied biomass. The highest drop to fracture (54 times/2 m) and impact resistance index (1350) were obtained for the sample produced from 97% coal and 3% torrefied biomass. The fixed and elemental carbons of the briquettes showed a mild improvement compared to the raw coal. The peaks from FTIR spectra for the briquettes shows the presence of aromatic C=C bonds and phenolic OH group. The composite briquettes with up to 20% torrefied biomass can all be useful as fuel for various applications.
ISSN:2095-8293
2198-7823
DOI:10.1007/s40789-021-00438-0