Deciphering meteorological influencing factors for Alpine rockfalls: a case study in Aosta Valley

This study exploited the historical rockfall inventory and the meteorological stations database of Mont Cervin and Mont Emilius Mountain Communities (Aosta Valley, northern Italy) to decipher relationships between climate processes, typical of mountain environments and rockfall phenomena. The period...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Landslides 2021-10, Vol.18 (10), p.3279-3298
Hauptverfasser: Bajni, Greta, Camera, Corrado A. S., Apuani, Tiziana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study exploited the historical rockfall inventory and the meteorological stations database of Mont Cervin and Mont Emilius Mountain Communities (Aosta Valley, northern Italy) to decipher relationships between climate processes, typical of mountain environments and rockfall phenomena. The period from 1990 to 2018 was selected as reference to perform the analysis. Climate processes were translated into four climate indices, namely short-term rainfall (STR), effective water inputs (EWI, including both rainfall and snow melting), wet and dry episodes (WD) and freeze-thaw cycles (FT). The comparison between climate indices values at each rockfall occurrence and the statistical distributions describing the whole indices dataset allowed to define not ordinary climatic conditions for each index and their influence on rockfall occurrence. Most of the events analysed (>95% out of 136) occurred in correspondence of the defined not ordinary climatic conditions for one or for a combination of the indices. The relationships between rockfalls and climate showed a seasonality. In spring, most of the events resulted to be connected to FT (70%) while in autumn to EWI (49%). The relative seasonal importance of WD reached its maximum in summer with 23% of the events related to this index alone. Based on these results, different strategies to define empirical critical thresholds for each climate index were explored, in order to make them valid for the whole study area. A preliminary exploratory analysis of the influence of high temperatures and temperature gradients was carried out for some summertime rockfalls, not correlated to the other investigated indices. The presented approach is exportable in neighbouring regions, given the availability of a dated rockfall dataset, and could be adapted to include different processes.
ISSN:1612-510X
1612-5118
DOI:10.1007/s10346-021-01697-3