The influence of slopes on interrill erosion processes using loessial soil

Purpose The influence of slope gradient on interrill erosion processes is a key scientific problem in the decision-making process regarding soil erosion control in Loess Plateau. The relationship of time to runoff (RT), flow velocity (V), runoff rate (RR) and interrill erosion rate (IER) with slope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of soils and sediments 2021-11, Vol.21 (11), p.3672-3681
Hauptverfasser: Wu, Bing, Li, Ludi, Xu, Ling, Wei, Xindong, Li, Xinlu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose The influence of slope gradient on interrill erosion processes is a key scientific problem in the decision-making process regarding soil erosion control in Loess Plateau. The relationship of time to runoff (RT), flow velocity (V), runoff rate (RR) and interrill erosion rate (IER) with slope gradient was investigated to derive accurate experimental model to evaluate and quantify the influence of slopes on interrill erosion processes. Materials and methods The experimental soil was collected from Ansai County of Shaanxi Province, China. The average diameter of the test soil was 0.041 mm. The experiment was conducted at slopes of 8.74%, 17.62%, 26.78%, 36.38%, 46.6%, 57.70% and 69.97% under I of 90, 120 and 150 mm h −1 , respectively, using indoor simulated rainfall. Time to runoff, flow velocity, runoff rate and interrill erosion rate were measured for each combination. Results and discussion Results showed that the time to runoff decreased as a linear function with increasing slope gradient. Slope gradient was a good predictor of time to runoff for different rainfall intensities with NSE from 0.90 to 0.97 and MSE from 0.1 to 0.25 and R 2 from 0.90 to 0.97. The flow velocity increased as a power function with increasing slope gradients. Slope gradient was a good predictor of flow velocity for different rainfall intensities with NSE from 0.91 to 0.93 and MSE from 0.01 to 0.015 and R 2 from 0.95 to 0.98. The runoff rate increased as a power function with increasing slope gradients. Slope gradient was a good predictor of runoff rate for different rainfall intensities with NSE from 0.90 to 0.95 and MSE from 0.000000024 to 0.000000044 and R 2 from 0.94 to 0.97. The interrill erosion rate increased as a power function with increasing slope gradients. Slope gradient was a good predictor of interrill erosion rate for different rainfall intensities with NSE from 0.98 to 0.99 and MSE from 0.00022 to 0.00055 and R 2 from 0.98 to 0.99. Conclusions By performing the controlled simulated rainfall experiments, this study showed that slopes strongly influenced interrill erosion processes for different rainfall intensities.
ISSN:1439-0108
1614-7480
DOI:10.1007/s11368-021-03018-6