Impact of yttria stabilized zirconia coating on diesel engine performance and emission characteristics fuelled by lemon grass oil biofuel

The aim of present work is to improve the efficiency and reduce the harmful exhaust emissions from diesel engines. Neat lemongrass oil was selected as a biofuel, and its physical and chemical properties based on ASTM standards were investigated. The combustion unit was coated with yttria-stabilized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2021-12, Vol.146 (5), p.2303-2315
Hauptverfasser: Viswanathan, Karthickeyan, Wang, Shuang, Esakkimuthu, Sivakumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of present work is to improve the efficiency and reduce the harmful exhaust emissions from diesel engines. Neat lemongrass oil was selected as a biofuel, and its physical and chemical properties based on ASTM standards were investigated. The combustion unit was coated with yttria-stabilized zirconia as a ceramic layering material. The initiative behind the thermal barrier coating was to acquire reduced heat losses by ceramic layering the combustion unit with the substance having reduced thermal conductivity, so as to aid in the transformation of accrued heat transformation into constructive work. Conventional diesel fuel was taken as a baseline fuel and investigated in the uncoated engine. Then, the coated combustion unit was installed in the engine and investigated with diesel. Subsequently, lemongrass biofuel was used as operating energy in both coated and normal conditions. Ceramic-layered conditions exhibited high engine efficiency with reduced fuel utilization. The result showed that the coated engine exhibited reduced emissions like smoke, HC and CO with the exception of NOx compared to normal engine. This variation was observed owing to trapping of energy inside the combustion unit and low level of energy transferred to the combustion chamber walls. Graphical abstract
ISSN:1388-6150
1588-2926
DOI:10.1007/s10973-020-10364-z