Numerische Prozessauslegung zur gezielten Eigenspannungseinstellung in warmmassivumgeformten Bauteilen unter Berücksichtigung von Makro- und Mikroskala

Zusammenfassung Ziel dieser Arbeit ist die Einstellung eines vorteilhaften Druckeigenspannungsprofils in warmumgeformten Bauteilen durch intelligente Prozessführung mit angepasster Abkühlung aus der Schmiedewärme. Die Machbarkeit und das Potenzial werden an einem Warmumformprozess, bei dem zylindris...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forschung im Ingenieurwesen 2021-09, Vol.85 (3), p.757-771
Hauptverfasser: Behrens, Bernd-Arno, Schröder, Jörg, Brands, Dominik, Brunotte, Kai, Wester, Hendrik, Scheunemann, Lisa, Uebing, Sonja, Kock, Christoph
Format: Artikel
Sprache:ger
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zusammenfassung Ziel dieser Arbeit ist die Einstellung eines vorteilhaften Druckeigenspannungsprofils in warmumgeformten Bauteilen durch intelligente Prozessführung mit angepasster Abkühlung aus der Schmiedewärme. Die Machbarkeit und das Potenzial werden an einem Warmumformprozess, bei dem zylindrische Proben mit exzentrischer Bohrung bei 1000 °C umgeformt und anschließend aus der Schmiedewärme im Wasser abgekühlt werden, aufgezeigt. Vorige Arbeiten zeigen, dass sich Zugeigenspannungen in den derartig umgeformten Proben aus dem Material 1.3505 einstellen. Mittels der vorgestellten mehrskaligen FE-Modelle, wird in dieser Arbeit eine alternative Prozessvariante analysiert, mit der vorteilhafte Druckeigenspannungen anstelle von Zugeigenspannungen durch eine angepasste Abkühlung aus der Umformwärme in den Proben erzeugt werden können. Die angepasste Kühlung wird durch eine partielle Beaufschlagung der Proben mit einem Wasser-Luft-Spray erreicht. Auf diese Weise kann die lokale Plastifizierung durch inhomogene Verzerrungen aufgrund thermischer und umwandlungsinduzierter Effekte beeinflusst werden, um letztlich das Eigenspannungsprofil individuell zu gestalten. Die wissenschaftliche Herausforderung dieser Arbeit besteht darin, unterschiedliche Eigenspannungen in der Oberfläche der Proben zu erzeugen, während die geometrischen und mikrostrukturellen Eigenschaften gleichbleiben. Es wird nachgewiesen, dass eine Beeinflussung der Eigenspannungen und sogar die Umkehr des Spannungsvorzeichens allein durch eine geschickte Prozessführung beim Abkühlen möglich ist.
ISSN:0015-7899
1434-0860
DOI:10.1007/s10010-021-00482-x