Transversals of longest cycles in partial k‐trees and chordal graphs

Let lct ( G ) be the minimum cardinality of a set of vertices that intersects every longest cycle of a 2‐connected graph G. We show that lct ( G ) ≤ k − 1 if G is a partial k‐tree and that lct ( G ) ≤ max { 1 , ω ( G ) − 3 } if G is chordal, where ω ( G ) is the cardinality of a maximum clique in G....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2021-12, Vol.98 (4), p.589-603
1. Verfasser: Gutiérrez, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let lct ( G ) be the minimum cardinality of a set of vertices that intersects every longest cycle of a 2‐connected graph G. We show that lct ( G ) ≤ k − 1 if G is a partial k‐tree and that lct ( G ) ≤ max { 1 , ω ( G ) − 3 } if G is chordal, where ω ( G ) is the cardinality of a maximum clique in G. Those results imply that all longest cycles intersect in 2‐connected series‐parallel graphs and in 3‐trees.
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.22714