Transversals of longest cycles in partial k‐trees and chordal graphs
Let lct ( G ) be the minimum cardinality of a set of vertices that intersects every longest cycle of a 2‐connected graph G. We show that lct ( G ) ≤ k − 1 if G is a partial k‐tree and that lct ( G ) ≤ max { 1 , ω ( G ) − 3 } if G is chordal, where ω ( G ) is the cardinality of a maximum clique in G....
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2021-12, Vol.98 (4), p.589-603 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
lct
(
G
) be the minimum cardinality of a set of vertices that intersects every longest cycle of a 2‐connected graph
G. We show that
lct
(
G
)
≤
k
−
1 if
G is a partial
k‐tree and that
lct
(
G
)
≤
max
{
1
,
ω
(
G
)
−
3
} if
G is chordal, where
ω
(
G
) is the cardinality of a maximum clique in
G. Those results imply that all longest cycles intersect in 2‐connected series‐parallel graphs and in 3‐trees. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22714 |