Primitive prime divisors in the critical orbits of one-parameter families of rational polynomials

For a polynomial $f(x)\in\mathbb{Q}[x]$ and rational numbers c, u, we put $f_c(x)\coloneqq f(x)+c$ , and consider the Zsigmondy set $\calZ(f_c,u)$ associated to the sequence $\{f_c^n(u)-u\}_{n\geq 1}$ , see Definition 1.1, where $f_c^n$ is the n-st iteration of fc. In this paper, we prove that if u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2021-11, Vol.171 (3), p.569-584
1. Verfasser: REN, RUFEI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a polynomial $f(x)\in\mathbb{Q}[x]$ and rational numbers c, u, we put $f_c(x)\coloneqq f(x)+c$ , and consider the Zsigmondy set $\calZ(f_c,u)$ associated to the sequence $\{f_c^n(u)-u\}_{n\geq 1}$ , see Definition 1.1, where $f_c^n$ is the n-st iteration of fc. In this paper, we prove that if u is a rational critical point of f, then there exists an Mf > 0 such that $\mathbf M_f\geq \max_{c\in \mathbb{Q}}\{\#\calZ(f_c,u)\}$ .
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004121000025