Primitive prime divisors in the critical orbits of one-parameter families of rational polynomials
For a polynomial $f(x)\in\mathbb{Q}[x]$ and rational numbers c, u, we put $f_c(x)\coloneqq f(x)+c$ , and consider the Zsigmondy set $\calZ(f_c,u)$ associated to the sequence $\{f_c^n(u)-u\}_{n\geq 1}$ , see Definition 1.1, where $f_c^n$ is the n-st iteration of fc. In this paper, we prove that if u...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 2021-11, Vol.171 (3), p.569-584 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a polynomial
$f(x)\in\mathbb{Q}[x]$
and rational numbers c, u, we put
$f_c(x)\coloneqq f(x)+c$
, and consider the Zsigmondy set
$\calZ(f_c,u)$
associated to the sequence
$\{f_c^n(u)-u\}_{n\geq 1}$
, see Definition 1.1, where
$f_c^n$
is the n-st iteration of fc. In this paper, we prove that if u is a rational critical point of f, then there exists an Mf > 0 such that
$\mathbf M_f\geq \max_{c\in \mathbb{Q}}\{\#\calZ(f_c,u)\}$
. |
---|---|
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004121000025 |