All-neural beamformer for continuous speech separation
Continuous speech separation (CSS) aims to separate overlapping voices from a continuous influx of conversational audio containing an unknown number of utterances spoken by an unknown number of speakers. A common application scenario is transcribing a meeting conversation recorded by a microphone ar...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-10 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Continuous speech separation (CSS) aims to separate overlapping voices from a continuous influx of conversational audio containing an unknown number of utterances spoken by an unknown number of speakers. A common application scenario is transcribing a meeting conversation recorded by a microphone array. Prior studies explored various deep learning models for time-frequency mask estimation, followed by a minimum variance distortionless response (MVDR) filter to improve the automatic speech recognition (ASR) accuracy. The performance of these methods is fundamentally upper-bounded by MVDR's spatial selectivity. Recently, the all deep learning MVDR (ADL-MVDR) model was proposed for neural beamforming and demonstrated superior performance in a target speech extraction task using pre-segmented input. In this paper, we further adapt ADL-MVDR to the CSS task with several enhancements to enable end-to-end neural beamforming. The proposed system achieves significant word error rate reduction over a baseline spectral masking system on the LibriCSS dataset. Moreover, the proposed neural beamformer is shown to be comparable to a state-of-the-art MVDR-based system in real meeting transcription tasks, including AMI, while showing potentials to further simplify the runtime implementation and reduce the system latency with frame-wise processing. |
---|---|
ISSN: | 2331-8422 |