Perturbation analysis of sub/super hedging problems

We investigate the links between various no‐arbitrage conditions and the existence of pricing functionals in general markets, and prove the Fundamental Theorem of Asset Pricing therein. No‐arbitrage conditions, either in this setting or in the case of a market consisting of European Call options, gi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical finance 2021-10, Vol.31 (4), p.1240-1274
Hauptverfasser: Badikov, Sergey, Davis, Mark H.A., Jacquier, Antoine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the links between various no‐arbitrage conditions and the existence of pricing functionals in general markets, and prove the Fundamental Theorem of Asset Pricing therein. No‐arbitrage conditions, either in this setting or in the case of a market consisting of European Call options, give rise to duality properties of infinite‐dimensional sub‐ and super‐hedging problems. With a view towards applications, we show how duality is preserved when reducing these problems over finite‐dimensional bases. We also introduce a rigorous perturbation analysis of these linear programing problems, and highlight numerically the influence of smile extrapolation on the bounds of exotic options.
ISSN:0960-1627
1467-9965
DOI:10.1111/mafi.12321