Virtual Knot Groups

For a knot diagram \(K\), the classical knot group \(\pi_1(K)\) is a free group modulo relations determined by Wirtinger-type relations on the classical crossings. The classical knot group is invariant under the Reidemeister moves. In this paper, we define a set of quotient groups associated to a kn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-10
Hauptverfasser: Dye, Heather A, Kaestner, Aaron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a knot diagram \(K\), the classical knot group \(\pi_1(K)\) is a free group modulo relations determined by Wirtinger-type relations on the classical crossings. The classical knot group is invariant under the Reidemeister moves. In this paper, we define a set of quotient groups associated to a knot diagram \(K\). These quotient groups are invariant under the Reidemeister moves and the set includes the extended knot groups defined by Boden et al and Silver and Williams.
ISSN:2331-8422