Virtual Knot Groups
For a knot diagram \(K\), the classical knot group \(\pi_1(K)\) is a free group modulo relations determined by Wirtinger-type relations on the classical crossings. The classical knot group is invariant under the Reidemeister moves. In this paper, we define a set of quotient groups associated to a kn...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a knot diagram \(K\), the classical knot group \(\pi_1(K)\) is a free group modulo relations determined by Wirtinger-type relations on the classical crossings. The classical knot group is invariant under the Reidemeister moves. In this paper, we define a set of quotient groups associated to a knot diagram \(K\). These quotient groups are invariant under the Reidemeister moves and the set includes the extended knot groups defined by Boden et al and Silver and Williams. |
---|---|
ISSN: | 2331-8422 |