Characterization of karst conduits by tracer tests for an artificial recharge scheme

Challenged by rapidly changing climate in combination with an increase in anthropogenic pressures, karst groundwater resources in the Old Town of Lijiang (OTLJ), SW China, are diminishing. Higher frequency and longer duration of dried-up periods have been observed at the Heilongtan Park (HP) Springs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrogeology journal 2021-11, Vol.29 (7), p.2381-2396
Hauptverfasser: Cen, Xinyu, Xu, Mo, Qi, Jihong, Zhang, Qiang, Shi, Haoxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Challenged by rapidly changing climate in combination with an increase in anthropogenic pressures, karst groundwater resources in the Old Town of Lijiang (OTLJ), SW China, are diminishing. Higher frequency and longer duration of dried-up periods have been observed at the Heilongtan Park (HP) Springs in recent years. Thus, there is an urgent need for an artificial recharge scheme, aimed at replenishing groundwater in the aquifer and increasing the outflow of the springs to ensure effective water resources management. Evaluation of the scheme feasibility, prior to its implementation, is important. In this study, tracer tests were conducted between the recharge area and receiving springs in order to gain insight into the transport mechanisms of karst groundwater and the structural characteristics of the aquifer. Multiple underground flow paths, exhibiting high conductivity between the recharge area and HP Springs, were revealed by the interpretation of tracer breakthrough curves. Three springs considered as the leakages of the scheme were identified. Moreover, the outflow of springs at HP and OTLJ were predicted to be increased by the artificially recharged water after 9.2 and 12.5 days, respectively. Quantitative analysis of tracer recoveries demonstrates that the springs to be recharged and the springs considered as leakages, respectively, share 45 and 55% of the increased outflow. The feasibility of the scheme has been confirmed by the tracer tests. This report provides references for the evaluation of artificial groundwater recharge and protection strategies, particularly in large and poorly investigated karst spring fields.
ISSN:1431-2174
1435-0157
DOI:10.1007/s10040-021-02398-w