On dualization of a result of Bryce and Cossey theory
Let σ be a partition of the set of all primes P . Let G be a finite group and F be a Fitting class of finite groups. In the theory of formations of finite soluble groups, a well known result of Bryce and Cossey is: a local formation F is a Fitting class if and only if every value of the canonical fo...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Hungarica 2021-10, Vol.165 (1), p.40-47 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47 |
---|---|
container_issue | 1 |
container_start_page | 40 |
container_title | Acta mathematica Hungarica |
container_volume | 165 |
creator | Hussain, M. T. Zafar, Z. U. A. Zhang, C. |
description | Let
σ
be a partition of the set of all primes
P
. Let
G
be a finite group and
F
be a Fitting class of finite groups. In the theory of formations of finite soluble groups, a well known result of Bryce and Cossey is: a local formation
F
is a Fitting class if and only if every value of the canonical formation function
F
of
F
is a Fitting class. In this paper, we give the dual theory of the result of Bryce and Cossey. We proved that an
σ
-local Fitting class
F
is a formation if and only if every value of the canonical
σ
-local
H
σ
-function of
F
is a formation. |
doi_str_mv | 10.1007/s10474-021-01168-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581442835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581442835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-97c2e80feb761cc44a26776d7c8c0ebb35dee1adcc76a1d5df9b4ce7ea701943</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMRvO384IFV9SpS7dLce-QKqSFDsZwq8nJUhsTHfD-7x3egi5ZnDLAMxdZiCNpMAZBca0pXBCFkxZS7kW_JQsgAtNFS_lObnIeQcASoBcELVpizj4ffPl-6Zri64ufJEwD_v-uD-kMWDh21isupxxLPp37NJ4Sc5qv8949TuXZPv0uF290PXm-XV1v6aBG-hpaQJHCzVWRrMQpPRcG6OjCTYAVpVQEZH5GILRnkUV67KSAQ16A6yUYklu5tpD6j4HzL3bdUNqp4uOK8uk5FaoKcXnVEjTjwlrd0jNh0-jY-COdtxsx0123I8dBxMkZihP4fYN01_1P9Q3-L1nAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581442835</pqid></control><display><type>article</type><title>On dualization of a result of Bryce and Cossey theory</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hussain, M. T. ; Zafar, Z. U. A. ; Zhang, C.</creator><creatorcontrib>Hussain, M. T. ; Zafar, Z. U. A. ; Zhang, C.</creatorcontrib><description>Let
σ
be a partition of the set of all primes
P
. Let
G
be a finite group and
F
be a Fitting class of finite groups. In the theory of formations of finite soluble groups, a well known result of Bryce and Cossey is: a local formation
F
is a Fitting class if and only if every value of the canonical formation function
F
of
F
is a Fitting class. In this paper, we give the dual theory of the result of Bryce and Cossey. We proved that an
σ
-local Fitting class
F
is a formation if and only if every value of the canonical
σ
-local
H
σ
-function of
F
is a formation.</description><identifier>ISSN: 0236-5294</identifier><identifier>EISSN: 1588-2632</identifier><identifier>DOI: 10.1007/s10474-021-01168-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Group theory ; Mathematics ; Mathematics and Statistics</subject><ispartof>Acta mathematica Hungarica, 2021-10, Vol.165 (1), p.40-47</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2021</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-97c2e80feb761cc44a26776d7c8c0ebb35dee1adcc76a1d5df9b4ce7ea701943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10474-021-01168-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10474-021-01168-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hussain, M. T.</creatorcontrib><creatorcontrib>Zafar, Z. U. A.</creatorcontrib><creatorcontrib>Zhang, C.</creatorcontrib><title>On dualization of a result of Bryce and Cossey theory</title><title>Acta mathematica Hungarica</title><addtitle>Acta Math. Hungar</addtitle><description>Let
σ
be a partition of the set of all primes
P
. Let
G
be a finite group and
F
be a Fitting class of finite groups. In the theory of formations of finite soluble groups, a well known result of Bryce and Cossey is: a local formation
F
is a Fitting class if and only if every value of the canonical formation function
F
of
F
is a Fitting class. In this paper, we give the dual theory of the result of Bryce and Cossey. We proved that an
σ
-local Fitting class
F
is a formation if and only if every value of the canonical
σ
-local
H
σ
-function of
F
is a formation.</description><subject>Group theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0236-5294</issn><issn>1588-2632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5giMRvO384IFV9SpS7dLce-QKqSFDsZwq8nJUhsTHfD-7x3egi5ZnDLAMxdZiCNpMAZBca0pXBCFkxZS7kW_JQsgAtNFS_lObnIeQcASoBcELVpizj4ffPl-6Zri64ufJEwD_v-uD-kMWDh21isupxxLPp37NJ4Sc5qv8949TuXZPv0uF290PXm-XV1v6aBG-hpaQJHCzVWRrMQpPRcG6OjCTYAVpVQEZH5GILRnkUV67KSAQ16A6yUYklu5tpD6j4HzL3bdUNqp4uOK8uk5FaoKcXnVEjTjwlrd0jNh0-jY-COdtxsx0123I8dBxMkZihP4fYN01_1P9Q3-L1nAw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Hussain, M. T.</creator><creator>Zafar, Z. U. A.</creator><creator>Zhang, C.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>On dualization of a result of Bryce and Cossey theory</title><author>Hussain, M. T. ; Zafar, Z. U. A. ; Zhang, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-97c2e80feb761cc44a26776d7c8c0ebb35dee1adcc76a1d5df9b4ce7ea701943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Group theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, M. T.</creatorcontrib><creatorcontrib>Zafar, Z. U. A.</creatorcontrib><creatorcontrib>Zhang, C.</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, M. T.</au><au>Zafar, Z. U. A.</au><au>Zhang, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On dualization of a result of Bryce and Cossey theory</atitle><jtitle>Acta mathematica Hungarica</jtitle><stitle>Acta Math. Hungar</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>165</volume><issue>1</issue><spage>40</spage><epage>47</epage><pages>40-47</pages><issn>0236-5294</issn><eissn>1588-2632</eissn><abstract>Let
σ
be a partition of the set of all primes
P
. Let
G
be a finite group and
F
be a Fitting class of finite groups. In the theory of formations of finite soluble groups, a well known result of Bryce and Cossey is: a local formation
F
is a Fitting class if and only if every value of the canonical formation function
F
of
F
is a Fitting class. In this paper, we give the dual theory of the result of Bryce and Cossey. We proved that an
σ
-local Fitting class
F
is a formation if and only if every value of the canonical
σ
-local
H
σ
-function of
F
is a formation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10474-021-01168-0</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0236-5294 |
ispartof | Acta mathematica Hungarica, 2021-10, Vol.165 (1), p.40-47 |
issn | 0236-5294 1588-2632 |
language | eng |
recordid | cdi_proquest_journals_2581442835 |
source | SpringerLink Journals - AutoHoldings |
subjects | Group theory Mathematics Mathematics and Statistics |
title | On dualization of a result of Bryce and Cossey theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20dualization%20of%20a%20result%20of%20Bryce%20and%20Cossey%20theory&rft.jtitle=Acta%20mathematica%20Hungarica&rft.au=Hussain,%20M.%20T.&rft.date=2021-10-01&rft.volume=165&rft.issue=1&rft.spage=40&rft.epage=47&rft.pages=40-47&rft.issn=0236-5294&rft.eissn=1588-2632&rft_id=info:doi/10.1007/s10474-021-01168-0&rft_dat=%3Cproquest_cross%3E2581442835%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581442835&rft_id=info:pmid/&rfr_iscdi=true |