On dualization of a result of Bryce and Cossey theory
Let σ be a partition of the set of all primes P . Let G be a finite group and F be a Fitting class of finite groups. In the theory of formations of finite soluble groups, a well known result of Bryce and Cossey is: a local formation F is a Fitting class if and only if every value of the canonical fo...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Hungarica 2021-10, Vol.165 (1), p.40-47 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
σ
be a partition of the set of all primes
P
. Let
G
be a finite group and
F
be a Fitting class of finite groups. In the theory of formations of finite soluble groups, a well known result of Bryce and Cossey is: a local formation
F
is a Fitting class if and only if every value of the canonical formation function
F
of
F
is a Fitting class. In this paper, we give the dual theory of the result of Bryce and Cossey. We proved that an
σ
-local Fitting class
F
is a formation if and only if every value of the canonical
σ
-local
H
σ
-function of
F
is a formation. |
---|---|
ISSN: | 0236-5294 1588-2632 |
DOI: | 10.1007/s10474-021-01168-0 |