Long medians and long angle bisectors

Following Euler, we denote the side lengths and angles of a triangle ABC by a, b, c, A, B, C in the standard order. Any line segment joining a vertex of ABC to any point on the opposite side line will be called a cevian , and a cevian AA′ of length t will be called long, strictly long, or balanced a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical gazette 2021-11, Vol.105 (564), p.397-409
Hauptverfasser: Abu-Saymeh, Sadi, Al-Momani, Yaqeen, Hajja, Mowaffaq, Hayajneh, Mostafa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following Euler, we denote the side lengths and angles of a triangle ABC by a, b, c, A, B, C in the standard order. Any line segment joining a vertex of ABC to any point on the opposite side line will be called a cevian , and a cevian AA′ of length t will be called long, strictly long, or balanced according as t ≥ a, t > a or t = a . If A′ lies strictly between B and C , AA′ is called an internal cevian . This convention regarding cevians is not universal, and it is, for example, in a heavy contrast with that in [1, p. 73].
ISSN:0025-5572
2056-6328
DOI:10.1017/mag.2021.106