Long medians and long angle bisectors
Following Euler, we denote the side lengths and angles of a triangle ABC by a, b, c, A, B, C in the standard order. Any line segment joining a vertex of ABC to any point on the opposite side line will be called a cevian , and a cevian AA′ of length t will be called long, strictly long, or balanced a...
Gespeichert in:
Veröffentlicht in: | Mathematical gazette 2021-11, Vol.105 (564), p.397-409 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Following Euler, we denote the side lengths and angles of a triangle ABC by
a, b, c, A, B, C
in the standard order. Any line segment joining a vertex of
ABC
to any point on the opposite side line will be called a
cevian
, and a cevian
AA′
of length
t
will be called
long, strictly long, or balanced
according as
t ≥ a, t > a or t = a
. If
A′
lies strictly between
B
and
C
,
AA′
is called an
internal cevian
. This convention regarding cevians is not universal, and it is, for example, in a heavy contrast with that in [1, p. 73]. |
---|---|
ISSN: | 0025-5572 2056-6328 |
DOI: | 10.1017/mag.2021.106 |