Sharp estimates for the covering numbers of the Weierstrass fractal kernel
In this paper, we use the infamous continuous and nowhere differentiable Weierstrass function as a prototype to define a Weierstrass fractal kernel. We investigate the properties of the reproducing kernel Hilbert space (RKHS) associated with this kernel by presenting an explicit characterization of...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we use the infamous continuous and nowhere differentiable Weierstrass function as a prototype to define a Weierstrass fractal kernel. We investigate the properties of the reproducing kernel Hilbert space (RKHS) associated with this kernel by presenting an explicit characterization of this space. In particular, we show that this space has a dense subset composed of continuous but nowhere differentiable functions. Moreover, we present sharp estimates for the covering numbers of the unit ball of this space as a subset of the continuous functions. |
---|---|
ISSN: | 2331-8422 |