Chaos–hyperchaos transition in three identical quorum-sensing mean-field coupled ring oscillators

We investigate the dynamics of three identical three-dimensional ring synthetic genetic oscillators (repressilators) located in different cells and indirectly globally coupled by quorum sensing whereby it is meant that a mechanism in which special signal molecules are produced that, after the fast d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2021-10, Vol.31 (10), p.103112-103112
Hauptverfasser: Stankevich, N., Volkov, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the dynamics of three identical three-dimensional ring synthetic genetic oscillators (repressilators) located in different cells and indirectly globally coupled by quorum sensing whereby it is meant that a mechanism in which special signal molecules are produced that, after the fast diffusion mixing and partial dilution in the environment, activate the expression of a target gene, which is different from the gene responsible for their production. Even at low coupling strengths, quorum sensing stimulates the formation of a stable limit cycle, known in the literature as a rotating wave (all variables have identical waveforms shifted by one third of the period), which, at higher coupling strengths, converts to complex tori. Further torus evolution is traced up to its destruction to chaos and the appearance of hyperchaos. We hypothesize that hyperchaos is the result of merging the saddle-focus periodic orbit (or limit cycle) corresponding to the rotating wave regime with chaos and present considerations in favor of this conclusion.
ISSN:1054-1500
1089-7682
DOI:10.1063/5.0056907