Potato Juice, a Starch Industry Waste, as a Cost-Effective Medium for the Biosynthesis of Bacterial Cellulose

In this work, we verified the possibility of valorizing a major waste product of the potato starch industry, potato tuber juice (PJ). We obtained a cost-effective, ecological-friendly microbiological medium that yielded bacterial cellulose (BC) with properties equivalent to those from conventional c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-10, Vol.22 (19), p.10807, Article 10807
Hauptverfasser: Ciecholewska-Jusko, Daria, Broda, Michal, Zywicka, Anna, Styburski, Daniel, Sobolewski, Peter, Goracy, Krzysztof, Migdal, Pawel, Junka, Adam, Fijalkowski, Karol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we verified the possibility of valorizing a major waste product of the potato starch industry, potato tuber juice (PJ). We obtained a cost-effective, ecological-friendly microbiological medium that yielded bacterial cellulose (BC) with properties equivalent to those from conventional commercial Hestrin-Schramm medium. The BC yield from the PJ medium (> 4 g/L) was comparable, despite the lack of any pre-treatment. Likewise, the macro- and microstructure, physicochemical parameters, and chemical composition showed no significant differences between PJ and control BC. Importantly, the BC obtained from PJ was not cytotoxic against fibroblast cell line L929 in vitro and did not contain any hard-to-remove impurities. The PJ-BC soaked with antiseptic exerted a similar antimicrobial effect against Staphylococcus aureus and Pseudomonas aeruginosa as to BC obtained in the conventional medium and supplemented with antiseptic. These are very important aspects from an application standpoint, particularly in biomedicine. Therefore, we conclude that using PJ for BC biosynthesis is a path toward significant valorization of an environmentally problematic waste product of the starch industry, but also toward a significant drop in BC production costs, enabling wider application of this biopolymer in biomedicine.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms221910807