Nitrogen Recovery from Clear-Cut Forest Runoff Using Biochar: Adsorption–Desorption Dynamics Affected by Water Nitrogen Concentration
Forest regeneration operations increase the concentration of nitrogen (N) in watercourses especially outside the growing season when traditional biological water protection methods are inefficient. Biochar adsorption-based water treatment could be a solution for nutrient retention. We studied the to...
Gespeichert in:
Veröffentlicht in: | Water, air, and soil pollution air, and soil pollution, 2021-10, Vol.232 (10), Article 432 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Forest regeneration operations increase the concentration of nitrogen (N) in watercourses especially outside the growing season when traditional biological water protection methods are inefficient. Biochar adsorption-based water treatment could be a solution for nutrient retention. We studied the total nitrogen (TN) and nitrate–nitrogen (NO
3
−
–N) adsorption–desorption properties of spruce and birch biochar. The adsorption test was performed under four different initial concentrations of TN (1, 2, 3, and 4 mg L
−1
) using forest runoff water collected from ditch drains of boreal harvested peatland. The results showed that the TN adsorption amount increased linearly from the lowest to the highest concentration. The maximum adsorption capacity was 2.4 and 3.2 times greater in the highest concentration (4 mg L
−1
) compared to the lowest concentration (1 mg L
−1
) in spruce and birch biochar, respectively. The NO
3
−
–N adsorption amount of birch biochar increased linearly from 0 to 0.15 mg NO
3
−
–N g biochar
−1
when the initial concentration of NO
3
−
–N increased from 0.2 to 1.4 mg L
−1
. However, in spruce biochar, the initial concentration did not affect NO
3
−
–N adsorption amount. The results indicate that concentration significantly affects the biochar’s capacity to adsorb N from water. The desorption test was performed by adding biochar extracted from the adsorption test into the forest runoff water with low TN concentration (0.2 or 0.35 mg L
−1
). The desorption results showed that desorption was negligibly small, and it was dependent on the TN concentration for birch biochar. Therefore, biochar can be a complementary method supporting water purification in peatland areas. |
---|---|
ISSN: | 0049-6979 1573-2932 |
DOI: | 10.1007/s11270-021-05366-y |