LAMMPS molecular dynamics simulation of methane decomposition on nickel thin films at high temperatures
•The activation energy of methane decomposition by nickel thin films was calculated using LAMMPS and ReaxFF.•A Ni thin film with (111) surfaces was simulated to investigate the deposition of carbon and hydrogen atoms on the surfaces.•The catalytic activity of the Ni (111) thin film decreased from th...
Gespeichert in:
Veröffentlicht in: | Surface science 2021-11, Vol.713, p.121904, Article 121904 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •The activation energy of methane decomposition by nickel thin films was calculated using LAMMPS and ReaxFF.•A Ni thin film with (111) surfaces was simulated to investigate the deposition of carbon and hydrogen atoms on the surfaces.•The catalytic activity of the Ni (111) thin film decreased from the point of critical supersaturation of carbon in the Ni thin film.
The activation energy of methane decomposition by nickel was calculated using models of nickel thin films, a large-scale atomic/molecular massively parallel simulator (LAMMPS) and a ReaxFF potential. The rate constants of the first-order chemical reaction of methane decomposition were obtained by analyzing the number of undecomposed methane molecules in individual movie frames. The obtained activation energies of methane decomposition on the Ni (111) surfaces showed values close to those reported in the literature. The structural change of a Ni thin film with (111) surfaces was simulated to investigate how carbon and hydrogen atoms are deposited on the Ni thin film upon the decomposition of methane molecules at a high temperature. The catalytic activity of the (111) Ni thin film was found to decrease from the time point of critical supersaturation of carbon in the Ni thin film.
[Display omitted] |
---|---|
ISSN: | 0039-6028 1879-2758 |
DOI: | 10.1016/j.susc.2021.121904 |