The 2019 September 24, Mw = 6, Mirpur earthquake, NW Himalaya: Geodetic evidence for shallow, near-horizontal décollement rupture of the Main Himalayan Thrust

We present a source model for the 2019 Mw = 6 Mirpur earthquake, NW Himalaya using Interferometric Synthetic Aperture Radar (InSAR) measurements. Bayesian inversion of InSAR data from both ascending and descending orbits suggests that the earthquake ruptured a shallow (Depth ~ 5 km), near-horizontal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonophysics 2021-10, Vol.816, p.229013, Article 229013
Hauptverfasser: Sreejith, K.M., Jasir, M.C.M., Agrawal, Ritesh, Rajawat, A.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a source model for the 2019 Mw = 6 Mirpur earthquake, NW Himalaya using Interferometric Synthetic Aperture Radar (InSAR) measurements. Bayesian inversion of InSAR data from both ascending and descending orbits suggests that the earthquake ruptured a shallow (Depth ~ 5 km), near-horizontal (Dip ~2.5°) up-dip portion of the décollement of the Main Himalayan Thrust (MHT). The distributed slip model suggests a compact rupture terminating the up-dip end at the base of the Main Frontal Thrust (MFT) with higher slip (> 0.4 m) around the hypocentre, equivalent to a moment magnitude of Mw = 6. A shallow up-dip rupture of the MHT through a moderate magnitude earthquake is atypical as Himalayan earthquakes generally originate at the down-dip portion of the MHT and propagate towards south. We estimate a low effective coefficient of friction of 0.06 ± 0.02 from the slip model and suggest that high pore fluid pressures and/or a weak, lubricated portion of décollement could have caused a local, near-horizontal rupture at the base of the MFT. The 2019 Mirpur earthquake released a small fraction of the accumulated strain energy since the 1555 Kashmir earthquake. Coseismic Coulomb stress change analysis suggests a significant increase in stress on the locked, up-dip portion of the MHT and the frontal fold-thrust system. These findings compel a revisit of the seismic hazard assessment of the northwestern Himalaya. •Himalayan earthquakes generally originate at the down-dip portion of the Main Himalayan Thrust•We report, for the first time, geodetic evidence for a shallow up-dip slip on the MHT through a moderate magnitude earthquake•Low fault friction due to high pore fluid pressure and/or lubricated fault surface would have caused the unusual near-horizontal rupture•Coseismic Coulomb stress analysis suggests a significant increase in stress on the frontal fold-thrust system, implying future seismic hazard
ISSN:0040-1951
1879-3266
DOI:10.1016/j.tecto.2021.229013