Existence and Asymptotic Behavior of Localized Nodal Solutions for a Class of Kirchhoff-Type Equations

In this paper, we study the existence and asymptotic behavior of localized nodal solutions for the following Kirchhoff-type equation - ε 2 a + ε b ∫ R 3 | ∇ u | 2 d x Δ u + V ( x ) u = | u | p - 2 u , x ∈ R 3 , where a > 0 , b > 0 and 4 < p < 6 . Under only a local condition that V has a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2021-12, Vol.31 (12), p.12411-12445
Hauptverfasser: Li, Quanqing, Nie, Jianjun, Wang, Wenbo, Zhang, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12445
container_issue 12
container_start_page 12411
container_title The Journal of Geometric Analysis
container_volume 31
creator Li, Quanqing
Nie, Jianjun
Wang, Wenbo
Zhang, Jian
description In this paper, we study the existence and asymptotic behavior of localized nodal solutions for the following Kirchhoff-type equation - ε 2 a + ε b ∫ R 3 | ∇ u | 2 d x Δ u + V ( x ) u = | u | p - 2 u , x ∈ R 3 , where a > 0 , b > 0 and 4 < p < 6 . Under only a local condition that V has a local trapping potential well, when ε > 0 is sufficiently small, we construct the existence of a sequence of localized nodal solutions concentrating around the local minimum points of the potential function V by using variational method and penalization approach. Moreover, we regard b as a parameter and study the asymptotic behavior of the nodal solutions as b ↘ 0 , which reflects some relationship between b > 0 and b = 0 .
doi_str_mv 10.1007/s12220-021-00722-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2580707677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707338911</galeid><sourcerecordid>A707338911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-8fdb04b06f0e994aac323e6fd1df70ccfc401c256178c17294ba26ba754ff7b3</originalsourceid><addsrcrecordid>eNp9kM9PwyAUxxujiXP6D3gi8Yw-aAvtcS7zR1z04A7eCKWwsXSlg844_3rZauLNcIBHPp_3Xr5Jck3glgDwu0AopYCBEhxLSjGcJCOS52Us6cdpfEMOmJWUnScXIawBMpZmfJSY2ZcNvW6VRrKt0STsN13veqvQvV7JT-s8cgbNnZKN_dY1enW1bNC7a3a9dW1AJgISTRsZwgF8sV6tVs4YvNh3Gs22O3nkLpMzI5ugr37vcbJ4mC2mT3j-9vg8ncyxSvOix4WpK8gqYAZ0WWZSqpSmmpma1IaDUkZlQBTNGeGFIpyWWSUpqyTPM2N4lY6Tm6Ft5912p0Mv1m7n2zhR0LwADpxxHqnbgVrKRgvbGtd7qeKp9cYq12pj4_8k0mlalIREgQ6C8i4Er43ovN1IvxcExCF_MeQvYv7imL-AKKWDFCLcLrX_2-Uf6wfHRIia</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580707677</pqid></control><display><type>article</type><title>Existence and Asymptotic Behavior of Localized Nodal Solutions for a Class of Kirchhoff-Type Equations</title><source>SpringerNature Journals</source><creator>Li, Quanqing ; Nie, Jianjun ; Wang, Wenbo ; Zhang, Jian</creator><creatorcontrib>Li, Quanqing ; Nie, Jianjun ; Wang, Wenbo ; Zhang, Jian</creatorcontrib><description>In this paper, we study the existence and asymptotic behavior of localized nodal solutions for the following Kirchhoff-type equation - ε 2 a + ε b ∫ R 3 | ∇ u | 2 d x Δ u + V ( x ) u = | u | p - 2 u , x ∈ R 3 , where a &gt; 0 , b &gt; 0 and 4 &lt; p &lt; 6 . Under only a local condition that V has a local trapping potential well, when ε &gt; 0 is sufficiently small, we construct the existence of a sequence of localized nodal solutions concentrating around the local minimum points of the potential function V by using variational method and penalization approach. Moreover, we regard b as a parameter and study the asymptotic behavior of the nodal solutions as b ↘ 0 , which reflects some relationship between b &gt; 0 and b = 0 .</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-021-00722-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Asymptotic properties ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of Geometric Analysis, 2021-12, Vol.31 (12), p.12411-12445</ispartof><rights>Mathematica Josephina, Inc. 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Mathematica Josephina, Inc. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-8fdb04b06f0e994aac323e6fd1df70ccfc401c256178c17294ba26ba754ff7b3</citedby><cites>FETCH-LOGICAL-c358t-8fdb04b06f0e994aac323e6fd1df70ccfc401c256178c17294ba26ba754ff7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-021-00722-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-021-00722-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Quanqing</creatorcontrib><creatorcontrib>Nie, Jianjun</creatorcontrib><creatorcontrib>Wang, Wenbo</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><title>Existence and Asymptotic Behavior of Localized Nodal Solutions for a Class of Kirchhoff-Type Equations</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>In this paper, we study the existence and asymptotic behavior of localized nodal solutions for the following Kirchhoff-type equation - ε 2 a + ε b ∫ R 3 | ∇ u | 2 d x Δ u + V ( x ) u = | u | p - 2 u , x ∈ R 3 , where a &gt; 0 , b &gt; 0 and 4 &lt; p &lt; 6 . Under only a local condition that V has a local trapping potential well, when ε &gt; 0 is sufficiently small, we construct the existence of a sequence of localized nodal solutions concentrating around the local minimum points of the potential function V by using variational method and penalization approach. Moreover, we regard b as a parameter and study the asymptotic behavior of the nodal solutions as b ↘ 0 , which reflects some relationship between b &gt; 0 and b = 0 .</description><subject>Abstract Harmonic Analysis</subject><subject>Asymptotic properties</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9PwyAUxxujiXP6D3gi8Yw-aAvtcS7zR1z04A7eCKWwsXSlg844_3rZauLNcIBHPp_3Xr5Jck3glgDwu0AopYCBEhxLSjGcJCOS52Us6cdpfEMOmJWUnScXIawBMpZmfJSY2ZcNvW6VRrKt0STsN13veqvQvV7JT-s8cgbNnZKN_dY1enW1bNC7a3a9dW1AJgISTRsZwgF8sV6tVs4YvNh3Gs22O3nkLpMzI5ugr37vcbJ4mC2mT3j-9vg8ncyxSvOix4WpK8gqYAZ0WWZSqpSmmpma1IaDUkZlQBTNGeGFIpyWWSUpqyTPM2N4lY6Tm6Ft5912p0Mv1m7n2zhR0LwADpxxHqnbgVrKRgvbGtd7qeKp9cYq12pj4_8k0mlalIREgQ6C8i4Er43ovN1IvxcExCF_MeQvYv7imL-AKKWDFCLcLrX_2-Uf6wfHRIia</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Li, Quanqing</creator><creator>Nie, Jianjun</creator><creator>Wang, Wenbo</creator><creator>Zhang, Jian</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope></search><sort><creationdate>20211201</creationdate><title>Existence and Asymptotic Behavior of Localized Nodal Solutions for a Class of Kirchhoff-Type Equations</title><author>Li, Quanqing ; Nie, Jianjun ; Wang, Wenbo ; Zhang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-8fdb04b06f0e994aac323e6fd1df70ccfc401c256178c17294ba26ba754ff7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Asymptotic properties</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Quanqing</creatorcontrib><creatorcontrib>Nie, Jianjun</creatorcontrib><creatorcontrib>Wang, Wenbo</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Quanqing</au><au>Nie, Jianjun</au><au>Wang, Wenbo</au><au>Zhang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Asymptotic Behavior of Localized Nodal Solutions for a Class of Kirchhoff-Type Equations</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>31</volume><issue>12</issue><spage>12411</spage><epage>12445</epage><pages>12411-12445</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In this paper, we study the existence and asymptotic behavior of localized nodal solutions for the following Kirchhoff-type equation - ε 2 a + ε b ∫ R 3 | ∇ u | 2 d x Δ u + V ( x ) u = | u | p - 2 u , x ∈ R 3 , where a &gt; 0 , b &gt; 0 and 4 &lt; p &lt; 6 . Under only a local condition that V has a local trapping potential well, when ε &gt; 0 is sufficiently small, we construct the existence of a sequence of localized nodal solutions concentrating around the local minimum points of the potential function V by using variational method and penalization approach. Moreover, we regard b as a parameter and study the asymptotic behavior of the nodal solutions as b ↘ 0 , which reflects some relationship between b &gt; 0 and b = 0 .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-021-00722-0</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2021-12, Vol.31 (12), p.12411-12445
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2580707677
source SpringerNature Journals
subjects Abstract Harmonic Analysis
Asymptotic properties
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Mathematics
Mathematics and Statistics
title Existence and Asymptotic Behavior of Localized Nodal Solutions for a Class of Kirchhoff-Type Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Asymptotic%20Behavior%20of%20Localized%20Nodal%20Solutions%20for%20a%20Class%20of%20Kirchhoff-Type%20Equations&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Li,%20Quanqing&rft.date=2021-12-01&rft.volume=31&rft.issue=12&rft.spage=12411&rft.epage=12445&rft.pages=12411-12445&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-021-00722-0&rft_dat=%3Cgale_proqu%3EA707338911%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580707677&rft_id=info:pmid/&rft_galeid=A707338911&rfr_iscdi=true