Existence and Asymptotic Behavior of Localized Nodal Solutions for a Class of Kirchhoff-Type Equations
In this paper, we study the existence and asymptotic behavior of localized nodal solutions for the following Kirchhoff-type equation - ε 2 a + ε b ∫ R 3 | ∇ u | 2 d x Δ u + V ( x ) u = | u | p - 2 u , x ∈ R 3 , where a > 0 , b > 0 and 4 < p < 6 . Under only a local condition that V has a...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2021-12, Vol.31 (12), p.12411-12445 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the existence and asymptotic behavior of localized nodal solutions for the following Kirchhoff-type equation
-
ε
2
a
+
ε
b
∫
R
3
|
∇
u
|
2
d
x
Δ
u
+
V
(
x
)
u
=
|
u
|
p
-
2
u
,
x
∈
R
3
,
where
a
>
0
,
b
>
0
and
4
<
p
<
6
. Under only a local condition that
V
has a local trapping potential well, when
ε
>
0
is sufficiently small, we construct the existence of a sequence of localized nodal solutions concentrating around the local minimum points of the potential function
V
by using variational method and penalization approach. Moreover, we regard
b
as a parameter and study the asymptotic behavior of the nodal solutions as
b
↘
0
, which reflects some relationship between
b
>
0
and
b
=
0
. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-021-00722-0 |