Optical investigation of heat release and NOx production in combustion
Two novel optical techniques are presented for non-intrusive, spatially resolved study of combustion, both based on passive Optical Emission Tomography (OET). Firstly, OET is used for non-intrusive study of heat release through the detection of chemiluminescence by the hydroxyl radical that is gener...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2007-10, Vol.85 (1), p.012007 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two novel optical techniques are presented for non-intrusive, spatially resolved study of combustion, both based on passive Optical Emission Tomography (OET). Firstly, OET is used for non-intrusive study of heat release through the detection of chemiluminescence by the hydroxyl radical that is generated in the burning process. The OET technique presented here is based on a passive fibre-optic detection system, which allows spatially resolved high-frequency detection of the flame front in a combustion flame, where all fibres detect the emission signals simultaneously. The system withstands the high pressures and temperatures typically encountered in the harsh environments of gas turbine combustors and IC engines. The sensor-array is non-intrusive, low-cost, compact, simple to configure and can be quickly set up around a combustion field. The maximum acquisition rate is 2 kHz. This allows spatially resolved study of the fast phenomena in combustion. Furthermore, a method is presented for study of the production of NOx through chemiluminescence from tri-methyl-borate (TMB). In combustion, the tri-methyl-borate produces green luminescence in locations where NOx would be produced. Combining the green luminescence visualisation with UV detection of the hydroxyl radical allows monitoring of heat release and of NOx production areas, thus giving a means of studying both the burning process and the resulting NOx pollution. |
---|---|
ISSN: | 1742-6596 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/85/1/012007 |