Prediction or causality? A scoping review of their conflation within current observational research

Etiological research aims to uncover causal effects, whilst prediction research aims to forecast an outcome with the best accuracy. Causal and prediction research usually require different methods, and yet their findings may get conflated when reported and interpreted. The aim of the current study i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of epidemiology 2021-09, Vol.36 (9), p.889-898
Hauptverfasser: Ramspek, Chava L., Steyerberg, Ewout W., Riley, Richard D., Rosendaal, Frits R., Dekkers, Olaf M., Dekker, Friedo W., van Diepen, Merel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Etiological research aims to uncover causal effects, whilst prediction research aims to forecast an outcome with the best accuracy. Causal and prediction research usually require different methods, and yet their findings may get conflated when reported and interpreted. The aim of the current study is to quantify the frequency of conflation between etiological and prediction research, to discuss common underlying mistakes and provide recommendations on how to avoid these. Observational cohort studies published in January 2018 in the top-ranked journals of six distinct medical fields (Cardiology, Clinical Epidemiology, Clinical Neurology, General and Internal Medicine, Nephrology and Surgery) were included for the current scoping review. Data on conflation was extracted through signaling questions. In total, 180 studies were included. Overall, 26% (n = 46) contained conflation between etiology and prediction. The frequency of conflation varied across medical field and journal impact factor. From the causal studies 22% was conflated, mainly due to the selection of covariates based on their ability to predict without taking the causal structure into account. Within prediction studies 38% was conflated, the most frequent reason was a causal interpretation of covariates included in a prediction model. Conflation of etiology and prediction is a common methodological error in observational medical research and more frequent in prediction studies. As this may lead to biased estimations and erroneous conclusions, researchers must be careful when designing, interpreting and disseminating their research to ensure this conflation is avoided.
ISSN:0393-2990
1573-7284
DOI:10.1007/s10654-021-00794-w